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Abstract

The use of classic Monte Carlo Markov Chains (MCMC) algorithms in the context

of Bayesian inference, which usually involves repeated likelihood evaluations, has become

more and more computationally expensive with the advent of Big Data. This dissertation

assesses and compares the efficiency of five recent algorithms designed to respond to this

challenge. First, we review extensively the theory behind each algorithm, provide a poten-

tial pseudo-code implementation, and identify mistakes in two of the original articles, one

of which seems substantial. Second, we test the algorithms on different synthetic data sets

to reveal their strengths and weaknesses. Among other techniques, the key metrics we use

are the Effective Sample Size (ESS) per likelihood evaluation (for efficiency) as well as the

quality of the posterior approximation, measured by the Hellinger distance between the

desired target and the obtained output.
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Introduction

Both frequentist and Bayesian approaches of inference assume that for any parameter θ

there exists a true value θ0. However, Bayesian inference regards parameter θ as a random

variable, which is not conceivable in a frequentist framework. The posterior distribution of

parameter θ, cornerstone of Bayesian analysis, updates thanks to Bayes’ formula1 the prior

knowledge of the scientist about θ, embodied by a prior distribution, with the information

about the parameter carried by the data, given by the likelihood distribution. In short,

π(θ|z) =
p(z|θ)π(θ)∫

θ∈Θ p(z|θ)π(θ)dθ
(1)

∝ p(z|θ)π(θ)

where, z, π(.|z), π(.), p(.|θ), Θ denote respectively the data, the posterior and the prior

distributions of θ, the likelihood function, and the parameter space.

Hence, in a Bayesian inference framework, the posterior distribution can be seen as a mea-

sure of uncertainty, or a strength of belief about the true value of parameter θ

However, in practice, this distribution is usually intractable and measures of interest like

its mean or mode may not be derived analytically, leading to the dominance of frequen-

tist methods over Bayesian ones in the first half of the 20th century. The emergence of
1The Bayes’ theorem, derived by Thomas Bayes (1701-1761) and Pierre-Simon Laplace (1749-1827),

states that for any events A and B such that P (B) 6= 0,

P (A|B) =
P (B|A)P (A)

P (B)
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Monte Carlo Markov Chains (MCMC) with the Metropolis-Hastings (MH) algorithm by

Metropolis et al. (1953) coupled with the advent of powerful computers enabled a strong

resurgence of Bayesian analysis. This fairly simple algorithm allows sampling from any

distribution provided one can evaluate its probability density function up to a normalis-

ing constant. We give below a possible implementation of the random walk Metropolis

Hastings algorithm.

Input : data set z, number of samples T , initial state θ0, proposal distribution q
Output: {θt}Tt=0 asymptotically from π(θ|z) ∝ p(z|θ)π(θ)

1 Initialization;
2 llikcurrent ← p(z|θ0);
3 for t=0,...,T do
4 θ′ ∼ q(.|θt);
5 llikproposal ← p(z|θ′);
6 u ∼ U[0,1];

7 α← min(1,
llikproposalπ(θ′)q(θt|θ′)
llikcurrentπ(θt)q(θ′|θt) );

8 if u ≤ α then
9 θt+1 ← θ′;

10 llikcurrent ← llikproposal
11 else
12 θt+1 ← θt
13 end
14 end

Algorithm 1: Metropolis-Hastings

Among other methods, Monte Carlo Markov Chains (MCMC) algorithms have been

used for years in order to approximate any posterior distribution in the context of Bayesian

inference. However, repeated evaluations of the likelihood function, which are at the core

of the vast majority of MCMC algorithms (cf algorithm 1), have become more and more

computationally expensive with the recent and steady increase in size of data sets, also

known as Big Data.

This dissertation aims at reviewing five recent MCMC methods designed to bypass likeli-

hood evaluations on the full data set in order to reduce the high computational cost in-

herent to the implementation of classic MCMC methods. The diverse choice of algorithms

reviewed reflects our desire to cover a broad part of the spectrum of current research in

this field of statistics. Using Bardenet et al. (2017)’s terminology, we may classify those
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algorithms as falling into two categories. Among the Divide-and-conquer approaches we

present Consensus Monte Carlo by Scott et al. (2016) and the Non-Parametric Density

Product Estimator (NPDPE) by Neiswanger et al. (2013). The other algortihms we review

fall into the subsampling methods category, namely a Pseudo-Marginal (PM) algorithm by

Quiroz et al. (2018), a rejection-free stochastic-gradient method by Welling and Teh (2011)

which builds upon Langevin Dynamics (SGLD), and the Approximate Metropolis-Hastings

test (ApMHT) by Korattikara et al. (2014).

In Chapter 1 we review extensively each method explaining the mechanisms at work

and providing our pseudo-code implementation. We also report the proofs of interest and

complete them by filling out the gaps left intentionally by the authors or by showing some

properties left unproved. Furthermore, after spotting a mistake in an essential consistency

proof of algorithm ApMHT, we provide a corrected alternative that leads to the desired

result.

In Chapter 2 we explain in details our methodology and assessment criteria before con-

fronting our algorithms to four synthetic Bayesian models whose posteriors display features

such as multi-modality, high variance and high dimensionality. We then sum up our dis-

coveries and the limitations of our analysis.
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Chapter 1

Algorithms

In this section, we attempt to make notation consistent across the five articles of interest.

Therefore, q(θ′|θ), p(z|θ), π(θ|z) and π(θ) will denote respectively the proposal distribution

used in the algorithm, the likelihood function, the posterior and the prior distributions.

We also let z be a data set of size N and θ a parameter in Θ ⊂ Rd.

1.1 Approximate Metropolis-Hastings Test (ApMHT)

We now present the first of the algorithms we review in this dissertation. Korattikara et al.

(2014) propose an interesting alternative to evaluating the likelihood function on the whole

data set.

Suppose that the observations are conditionally independent given the parameter θ, i.e

that p(z|θ) =
∏N
i=1 p(zi|θ), then the posterior distribution can be written as follows.

π(θ|z) ∝ π(θ)

N∏
i=1

p(zi|θ)

We prove the following proposition that is used by Korattikara et al. (2014) in order to

reformulate the usual MH accept-reject step (cf algorithm 1)

Proposition 1.1.1. Let u ∼ U[0,1] and α = min
(

1, π(θ′|z)q(θt|θ′)
π(θ|z)q(θ′|θt)

)
. Then u ≤ α⇔ µ0 ≤ µ,
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where

µ0 =
1

N
log

(
u
π(θt)q(θ

′|θt)
π(θ′)q(θt|θ′)

)
(1.1)

µ =
1

N

N∑
i=1

li where li = log p(zi|θ′)− log p(zi|θt)for θ′, θt ∈ Θ (1.2)

And α denotes the standard Metropolis-Hastings acceptance probability (cf algorithm 1)

Proof.

µ0 ≤ µ⇔ log

(
u
π(θt)q(θ

′|θt)
π(θ′)q(θt|θ′)

)
−

N∑
i=1

li ≤ 0

⇔ log

(
u
π(θt)

∏N
i=1 p(zi|θt)q(θ′|θt)

π(θ′)
∏N
i=1 p(zi|θ′)q(θt|θ′)

)
≤ 0

⇔ u
π(θt)

∏N
i=1 p(zi|θt)q(θ′|θt)

π(θ′)
∏N
i=1 p(zi|θ′)q(θt|θ′)

≤ 1

⇔ u ≤ α

The trick used by Korattikara et al. (2014) is to bypass the full computation of µ by only

using a subsample X ⊂ z of size m ≤ N drawn uniformly at random from {1, ..., N}

without replacement. A simple Student’s t-test is then performed in order to determine

whether the estimator µ̂ = l̄ = 1
|X |
∑

i∈X li of µ is significantly different from µ0. If the test

is conclusive, then Proposition 1.1.1 enables us to make a decision regarding the acceptance

or rejection of a candidate θ′ by checking the sign of µ̂− µ0 . On the contrary, if µ̂ is not

significantly different from 0, then m new data points are randomly added to X and this

until we do not need any more data to decide whether µ0 < µ or µ0 > µ. See algorithm 2

for a more detailed implementation.
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Input : z, T , ε, m, θ0, q
Output: {θt}Tt=0 asymptotically and approximately from π(θ|z) ∝ p(z|θ)π(θ)

1 Initialization;
2 number_llik_eval← 0;
3 for t=0,...,T do
4 data← z n← 0, done← FALSE;
5 θ′ ∼ q(.|θt);
6 u ∼ U[0,1];

7 µ0 = 1
N × log

(
uπ(θt)q(θ′|θt)
π(θ′)q(θt|θ′)

)
;

8 X = ∅;
9 while done = FALSE do

10 Draw mini-batch X ′ of size min(m,N − n) from data without replacement
and do data← data \ X ′ as well as X = (X ,X ′);

11 n = |X |
12 l̄← 1

n

∑n
i=1 log p(Xi; θ′)− log p(Xi; θt);

13 l̄2 ← 1
n

∑n
i=1 (log p(Xi; θ′)− log p(Xi; θt))2;

14 ŝl ←
√

n
n−1(l̄2 − l2);

15 ŝ← ŝl√
n

√
1− n−1

N−1 ;

16 δ ← 1− φ(|l̄ − µ0|/ŝ);n− 1);
17 if δ < ε then
18 if l̄ > µ0 then
19 θt+1 = θ′

20 else
21 θt+1 = θt
22 end
23 done← TRUE;
24 number_llik_eval← number_llik_eval + n

25 end
26 end
27 end
Algorithm 2: ApMHT. φ(.;n) denotes the CDF of the Student t-distribution with n
degrees of freedom

Note that when m = N , then ApMHT is equivalent to standard MH. Indeed, if m = N

then µ̂ = l̄ = µ and ŝ as defined in the algorithm above is equal to 0. Hence δ = 0 which

in turn implies that ApMHT becomes the standard MH algorithm.

ApMHT is an approximate method since it does not target the true posterior exactly.

However, Korattikara et al. (2014) manage to find a reasonably small upper bound to the

total variation distance1 between the posteriors targeted by ApMHT on the one hand and

standard MH, on the other hand.
1Let (Θ,S, µ) be a measure space and P1 and P2 be two probability measures with Radon-Nikodym

derivatives fP1 and fP2 respectively. Then the total variation distance is dT ≡ 1
2

∫
Θ
|fP1(θ)− fP2(θ)|dµ(θ)
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Let (K0, π0, α0) and (Kε, πε, αε) denote the transition kernels, the target distributions

and the acceptance probability of standard MH and ApMHT respectively. Note that αε is

analytically intractable since it is an expectation over multiple random variables, namely

the batch size m, the batch X as well as the proposal θ′ ∼ q.

We first show the following lemma in greater details than the original article.

Lemma 1.1.1. Let P be a probability distribution and η ∈ [0, 1).

If

dT (PK0, π0) ≤ ηdT (P, π0) (Contraction condition) (1.3)

and ∃∆ > 0 s.t

dT (PK0, PKε) ≤ ∆ (Bounded one-step error) (1.4)

Then the total variation distance between π0 and πε is upper-bounded as follows

dT (π0, πε) ≤
∆

1− η
(1.5)

Proof. Let us consider a Markov chain with transition kernel Kε initialised by a random

probability measure P . Denote by P (t) := PKtε the distribution after t time steps. Thanks

to (1.4) we can provide an upper-bound to the distance between P (t+1) and P (t)K0 :

dT (P (t+1), P (t)K0) = dT (P (t)Kε, P (t)K0) ≤ ∆ (1.6)

Also, by (1.3), we have

dT (P (t)K0, π0) ≤ ηdT (P (t), π0) (1.7)
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We can now derive an upper-bound for the distance between P (t+1) and π0. By the triangle

inequality,

dT (P (t+1), π0) ≤ dT (P (t+1), P (t)K0) + dT (P (t)K0, π0)

≤ ∆ + ηdT (P (t), π0) (1.8)

Let 0 < r < 1 − η and let B(π0,
∆
r ) ≡ {P : dT (P, π0) < ∆

r } be the ball with centre

π0 and radius ∆
r . Now consider the case when P (t) /∈ B(π0,

∆
r ) i.e dT (P (t), π0) ≥ ∆

r ⇔

dT (P (t), π0)r ≥ ∆. Hence, (1.8) is equivalent to

dT (P (t+1), π0) ≤ rdT (P (t), π0) + ηdT (P (t), π0) = (r + η)dT (P (t), π0) (1.9)

with r + η < 1.

Note that (1.9) only holds for P (t) outside the ball. Hence, it does not imply convergence

of P (t) to π0 as t → ∞. It suggests instead that (P (t))t will get closer and closer to π0

until it enters the ball after a final number of steps t0 ∈ N, as illustrated in Figure 1.1.

We now need to show that (P (t))t does not leave the ball once it got inside, i.e that for all

t ≥ t0, P (t) ∈ B(π0,
∆
r ). We proceed by induction.

1. At step t = t0, P (t) ∈ B(π0,
∆
r ) by definition of t0.

2. Let t ∈ N, t > t0 and assume P (t) ∈ B(π0,
∆
r )⇔ dT (P (t), π0) ≤ ∆

r . Then

dT (P (t+1), π0) ≤ ∆ + ηdT (P (t), π0) ≤ ∆ + η
∆

r
by the induction hypothesis

=
∆

r
(η + r) ≤ ∆

r

⇒ P (t+1) ∈ B(π0,
∆

r
)

9



Hence, we have proved that ∀t ≥ t0, P (t) ∈ B(π0,
∆
r ). Now, since {P (t)}t∈N converges to

πε, then

πε ∈ B(π0,
∆

r
)

⇔dT (πε, π0) ≤ ∆

r
, ∀ 0 < r < 1− η

⇒dT (πε, π0) ≤ ∆

1− η
(1.10)

Figure 1.1: Illustration of equation (1.9)

•
P (t)

•P (t+1)

•P (t+2)

•P (t+3)

•
π0

B(π0,
∆
r )

Theorem 1.1.1. Making the same assumptions as in Lemma 1.1.1, the total variation

distance between π0 and πε is upper bounded as follows :

dT (π0, πε) ≤
∆max

1− η

where ∆max ≡ supθ,θ′ |αε(θ, θ′)− α0(θ, θ′)| and η ∈ [0, 1)

In the proof provided by Korattikara et al. (2014), we have spotted a mistake in the

definition of the Metropolis-Hastings transition kernel which in turn leads to a flawed proof.
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They indeed write this kernel as

K0(θ, θ′) = α0(θ, θ′)q(θ′|θ) + δθ(θ
′)(1− α0(θ, θ′))

Instead of

K0(θ, θ′) = α0(θ, θ′)q(θ′|θ) + δθ(θ
′)(1− r0(θ))

where

r0(θ) =

∫
θ′
α0(θ, θ′)q(θ′|θ)dθ′

as can be seen on Figure A.1 in Appendix where we provide a screenshot of the proof given

in the article. This is not simply a typo, as later in the proof it is clear they use α0 instead

or r0.

However, the corrected proof we provide below does lead to the same result.

Proof. Now that Lemma (1.1.1) is proved, there only remains to show that for any proba-

bility measure P ,

dT (PK0, PKε) =
1

2

∫
θ′∈Θ
|(PKε)(θ′)− (PK0)(θ′)|dθ′ ≤ ∆max (1.11)

where ∆max := supθ,θ′ |αε(θ, θ′)− α0(θ, θ′)|.

In the ApMHT algorithm, the transition kernel Kε is

Kε(θ, θ′) = αε(θ, θ
′)q(θ′|θ) + δθ(θ

′)(1− rε(θ))

where we use the approximate acceptance probability αε instead of α0 and rε is defined in

a similar way as r0.
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Let ∆α := αε−α0 the error in the acceptance probability. Clearly, this quantity is upper-

bounded by ∆max as |∆α| ≤ ∆max, by definition of ∆max.

Proof of (1.11). For all P probability measure,

1

2

∫
θ′∈Θ
|(PKε)(θ′)− (PK0)(θ′)|dθ′

=
1

2

∫
θ′∈Θ

∣∣∣∣∫
θ∈Θ

(PKε)(θ, θ′)− (PK0)(θ, θ′)dP (θ)

∣∣∣∣ dθ′
=

1

2

∫
θ′∈Θ

∣∣∣∣∫
θ∈Θ

(αε(θ, θ
′)q(θ′|θ) + δθ(θ

′)(1− rε(θ))− α0(θ, θ′)q(θ′|θ)− δθ(θ′)(1− r0(θ)))dP (θ)

∣∣∣∣ dθ′
=

1

2

∫
θ′∈Θ

∣∣∣∣∫
θ∈Θ

q(θ′|θ)∆α(θ, θ′)− δθ(θ′)(rε(θ)− r0(θ))dP (θ)

∣∣∣∣ dθ′
≤1

2

∫
θ′∈Θ

∫
θ∈Θ

q(θ′|θ)|∆α(θ, θ′)|+ δθ(θ
′)|rε(θ)− r0(θ)|dP (θ)dθ′

Where

|rε(θ)− r0(θ)| =
∣∣∣∣∫
θ′

(αε(θ, θ
′)− α0(θ, θ′))q(θ′|θ)dθ′

∣∣∣∣
≤
∫
θ′
|αε(θ, θ′)− α0(θ, θ′)|q(θ′|θ)dθ′

≤ ∆max

∫
θ′
q(θ′|θ)dθ′

= ∆max

Hence

1

2

∫
θ′∈Θ
|(PKε)(θ′)− (PK0)(θ′)|dθ′

≤1

2
∆max

∫
θ′∈Θ

∫
θ∈Θ

q(θ′|θ) + δθ(θ
′)dP (θ)dθ′

=∆max

One might be worried that ∆max is large. However recall that if ε → 0, then the batch
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size m tends to N which in turn implies that αε → α0. Hence, provided we choose ε small

enough, the upper-bound derived in Theorem 1.1.1 is guaranteed to be small. Under this

condition, ApMHT should yield a good approximation of the posterior π0.
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1.2 Stochastic Gradient Langevin Dynamics (SGLD)

We now present the second of the algorithms we consider.

Stochastic Gradient Langevin Dynamics (SGLD, Welling and Teh (2011)) has two ma-

jor assets when applied to Bayesian posterior sampling in the context of Big Data. Firstly,

it only requires a fraction of size m� N of the total data set at each iteration. Secondly,

it can be tuned to become a rejection-free algorithm, ensuring that every candidate θ′ is

accepted at each step, which once again reduces the total computational cost as we by-

pass the evaluation of the acceptance probability α of standard Metropolis-Hastings (MH,

Metropolis et al. (1953)).

This class of algorithms combines two major concepts, namely Langevin Monte Carlo the-

ory (LMC, Roberts and Rosenthal (1998)) and stochastic gradient which we review below.

LMC relies on the overdamped Langevin Îto diffusion, or Langevin equation.

dθt =
1

2
∇θt log π(θt|z) + dηt (1.12)

where ηt is a d-dimensional Wiener Process.

However, the use of digital computers requires a discretised version of (1.12). Equation

(1.13) can then be used as a proposal distribution in standard MH.

θt+1 = θt +
ε

2
∇θt log π(θt|z) + ηt (1.13)

where ηt ∼ N (0, εt).

This discretisation process comes at the expense of the rejection-free property of exact

LMC. Indeed, an expensive MH accept-reject step is essential to correct the discretisation

error in order to target the true posterior. However, as ε → 0, the discretisation error

decreases so that the acceptance probability α tends back to 1, making the accept-reject

step unnecessary, if an approximate target is acceptable.
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SGLD is, in its original form, an asymptotically exact algorithm which builds upon the

latter and introduces the use of mini-batches of data in order to further enhance compu-

tational efficiency when evaluating the gradient of the posterior. In fact, the update step

of SGLD goes as follows.

Let I ⊂ {1, ..., N} be an index subset of size m� N ,

θt+1 = θt +
εt
2

(
∇θt log π(θt) +

N

n

∑
i∈I
∇θt log p(zi|θt)

)
︸ ︷︷ ︸

stochastic gradient

+ ηt︸︷︷︸
injected noise

(1.14)

where ηt ∼ N (0, εt) and

∞∑
t=1

εt =∞ and
∞∑
t=1

ε2
t <∞ (1.15)

In (1.15), the first condition ensures good mixing of the Markov chain whereas the

second makes sure that the chain does converge to the model.

Welling and Teh (2011) give an informal intuition as to why SGLD produces samples that

asymptotically approach the true posterior π(θ|z), i.e why (1.14) is equivalent to (1.13) as

t→∞.

Stochasticity comes from two factors in (1.14), namely the stochastic gradient and the

injected Gaussian noise ηt. It is easy to see that they respectively have a variance of O(ε2
t )

and O(εt). Hence, as t → ∞, (1.15) implies that εt → 0, which in turn implies that the

injected noise dominates the stochastic gradient noise. Therefore, one should expect SGLD

to sample from the true posterior approximately as t → ∞. Besides, since εt → 0, the

acceptance probability α tends to 1 which makes the accept-reject step unnecessary.

However, in practice, it is common to use a small constant step-size 0 < ε � 1 tuned

in order to be big enough to guarantee good mixing and small enough to bypass the MH

15



accept-reject step. The algorithm is then no longer asymptotically exact.

Below is given a possible implementation of the algorithm.

Input : data z, ε, T , m, θ0

Output: θ = {θt}Tt=0 approximately drawn from π(θ|z) ∝ p(z|θ)π(θ)
1 Initialization;
2 for t = 0, ..., T do
3 Draw minibatch of size m X ⊂ z without replacement;
4 Draw η ∼ N (0, ε2);
5 θt+1 = θt + ε

2

(
∇θt log π(θt) + N

m∇θt log p(X|θt) + η
)
;

6 end
Algorithm 3: ’Approximate’ SGLD
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1.3 Consensus Monte-Carlo

We now present the third algorithm reviewed in this study.

Parallelising MCMC computations is another strategy that can be implemented in order

to bypass large likelihood evaluations. This class of methods splits the data into smaller

batches and distribute them to several cores or machines. Assume, M machines are avail-

able. Making the assumption that the observations are conditionally independent given θ,

the posterior distribution can be written as follows :

π(θ|z) ∝
M∏
m=1

π(θ)1/Mp(zm|θ) (1.16)

where {z1, ..., zM} denote subsets of data set z and ∀1 ≤ i, j ≤ M , zi ∩ zj = ∅. Then,

the user can run independently and simultaneously standard MCMC methods on batches

of size m � N if M is large enough, which should decrease the total computation time

dramatically. Note that machine m ∈ {1, ...,M} will generate samples {θmt }t from an al-

gorithm targeting πm(θ|z) ∝ π(θ)1/Mp(zm|θ). This first step is a common feature of most

algorithms using this so-called divide-and-conquer strategy (Bardenet et al. (2017)). They

differ however on how to combine the M generated samples in order to obtain samples

{θt}t ∼ π(θ|z), i.e distributed according to the true posterior.
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Figure 1.2: Parallel MCMC strategy
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Scott et al. (2016) suggest using the Consensus Monte-Carlo algorithm. This method

uses intensively the Bernstein-Von Mises theorem and its extension by Le Cam and Yang

(2012) which states that under some regularity conditions, the posterior distribution is

asymptotically independent from the prior and follows a normal distribution concentrated

around the true value of the estimated parameter with variance equal to the inverse of

the Fischer information matrix. In particular, one can make the assumption that θ|zm,

m = 1, ...,M is normally distributed, provided that |zm| is large enough.

We prove the following lemma 1.3.1 and property 1.3.1 which are at the core of Scott et al.

(2016)’s algorithm and are left unproved in their article as a bit too obvious.

Lemma 1.3.1. Suppose that M = 2. This can be assumed without loss of generality as

the following method may be iterated. If

θ|z1 ∼ N (µ1,Σ1) and θ|z2 ∼ N (µ2,Σ2)

then

θ|z ∼ N (µ,Σ) (1.17)
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where

Σ = (Σ−1
1 + Σ−1

2 )−1 and µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2)

Proof.

π(θ|z) ∝ π(θ|z1)π(θ|z2)

∝ exp

(
−1

2

[
(θ − µ1)TΣ−1

1 (θ − µ1) + (θ − µ2)TΣ−1
2 (θ − µ2)

])
∝ exp

(
−1

2

[
θT (Σ−1

1 + Σ−1
2 )θ − 2(Σ−1

1 µ1 + Σ−1
2 µ2)T θ

])
by symmetry of Σ1 and Σ2

∝ exp

(
−1

2

[
(θ − Σ(Σ−1

1 µ1 + Σ−1
2 µ2))Σ−1(θ − Σ(Σ−1

1 µ1 + Σ−1
2 µ2))T

])
by completing the square

∝ exp

(
−1

2

[
(θ − µ))Σ−1(θ − µ))T

])

Property 1.3.1. Let θ1 ∼ N (µ1,Σ1) and θ2 ∼ N (µ2,Σ2).

Then Σ(Σ−1
1 θ1 + Σ−1

2 θ2) ∼ N (µ,Σ)

Proof. It is clear that the quantity of interest is normal, as a linear combination of

normally-distributed variables. Now

• E[Σ(Σ−1
1 θ1 + Σ−1

2 θ2)] = Σ(Σ−1
1 µ1 + Σ−1

2 µ2) = µ

• V
(
Σ(Σ−1

1 θ1 + Σ−1
2 θ2)

)
= V

(
ΣΣ−1

1 θ1

)
+ V

(
ΣΣ−1

2 θ2

)
= Σ(Σ−1

1 + Σ−1
2 )Σ = Σ

Hence, assuming the posterior is asymptotically normal, as is the case if Bernstein-

Von Mises theorem applies, and the number of data points is large, then by Lemma 1.3.1

and Property 1.3.1, Scott et al. (2016) combine the obtained M samples by applying the

following formula in order to target the full posterior :
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Suppose machine m generates sample θm1, ..., θmT . Then ∀t ∈ {1, ..., T},

θt =

(
M∑
m=1

Σ−1
m

)−1 M∑
m=1

Σ−1
m θmt (1.18)

Note that this is simply a weighted average of the subposterior samples with weights Σ−1
m ,

m = 1, ...,M . In practice, only an estimate of the weights can be computed as seen in the

algorithm below.

Input : samples θm = {θmt}Tt=1 each from π(θ|zs) ∝ p(zm|θ)π(θ)1/M where zm
denotes subsets of the data for m = 1, ...,M

Output: θ = {θt}Tt=0 asymptotically from π(θ|z) ∝ p(z|θ)π(θ)
1 Initialization;
2 Wm ←

(
var({θmt}Tt=1)

)−1 for m = 1, ...,M ;
3 W ←

∑M
m=1Wm;

4 θ ← 0;
5 for m = 1, ...,M do
6 θ = θ +Wmθm;
7 end
8 θ = W−1θ

Algorithm 4: Consensus Monte Carlo

One can notice that if the posterior distribution is normal, then this algorithm targets

exactly the posterior. However if the posterior is only assymptotically normal by the

Bernstein-Von Mises theorem, then Consensus Monte-Carlo is only asymptotically exact.
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1.4 Asymptotically exact sampling via non-parametric den-

sity product estimation

We now introduce the fourth algorithm of our study.

TheNon-Parametric Density Product Estimator (NPDPE) algorithm described by Neiswanger

et al. (2013) comes as a more flexible alternative to the Consensus Monte-Carlo described

in Section 1.3. With Consensus Monte-Carlo one could expect substantial issues in cases

where the Bernstein-Von Mises theorem does not hold. NPDPE however does not make

such assumptions on the asymptotic behaviour of the posterior distribution.

As in Section 1.3, we rewrite the posterior distribution as

π(θ|z) ∝
M∏
m=1

π(θ)1/Mp(zm|θ) (1.19)

where {z1, ..., zM} denote subsets of data set z and ∀1 ≤ i, j ≤ M , zi ∩ zj = ∅. Assum-

ing we have obtained thanks to standard MCMC methods T samples {θmtm}
T
tm=1 for each

subposterior πm, Neiswanger et al. (2013) propose the following kernel estimator π̂m

π̂m(θ) =
1

T

T∑
tm=1

1

hd
K
( ||θ − θmtm ||

h

)
(1.20)

where K denotes any kernel function with bandwidth h ∈ R+. We will use from now on a

standard Gaussian kernel, i.e

π̂m(θ) =
1

T

T∑
tm=1

Nd(θ|θmtm , h
2Id) (1.21)

Now, the estimator of the posterior distribution suggested by Neiswanger et al. (2013)

is simply the product of the subposterior estimators defined in (1.21), hence the name

Non-Parametric Density Product Estimator :
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π̂1...πM (θ) = π̂1(θ)...π̂M (θ)

=
1

TM

M∏
m=1

T∑
tm=1

Nd(θ|θmtm , h
2Id)

∝
T∑

t1=1

...

T∑
tM=1

[
M∏
m=1

Nd

(
θmtm

∣∣∣∣ 1

M

M∑
m=1

θmtm , h
2Id

)]
︸ ︷︷ ︸

weight

Nd

(
θ

∣∣∣∣ 1

M

M∑
m=1

θmtm ,
h2

M
Id

)

(1.22)

which can be derived through a straightforward but tedious computation.

Although (1.22) is a large mixture of TM normal distributions, one can sample rather

easily from it. One should first sample a mixture weight by using a Metropolis within

Gibbs sampler and then sampling from the normal distribution associated with the sampled

weight. A complete description of this procedure is given in Algorithm 5.

In practice, we find that tuning the bandwidth h to a constant small number yields more

efficient mixing. Also, in order to prevent computational stability issues, we find that the

accept-reject step performed in line 23 is much more reliable when the ratio of weights is

log-transformed. Hence, we recommend that line 23 be written as follows :

if log(u) < log(wc)− log(wt̃) then
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Input : samples θm = {θmt}Tt=1 each from π(θ|zs) ∝ p(zm|θ)π(θ)1/M where zm
denotes subsets of the data for m = 1, ...,M

Output: θ = {θt}Tt=0 asymptotically from π(θ|z) ∝ p(z|θ)π(θ)
1 Initialization;

2 t̃ = {t1, ..., tM}
i.i.d∼ U{1,...,T};

3 for i = 1, ..., T do
4 h← i−1/(4+d);
5 for m = 1, ..,M do
6 c← t̃;
7 cm ∼ U{1,...,T};
8 θ̄t̃ ← 0;
9 θ̄c ← 0;

10 wt̃ ← 1;
11 wc ← 1;
12 for j = 1, ...,m do
13 θ̄t̃ ← θ̄t̃ + θj

t̃j
;

14 θ̄c ← θ̄c + θccj ;
15 end
16 θ̄t̃ ← 1

M θ̄t̃;
17 θ̄c ← 1

M θ̄c;
18 for j = 1, ...,m do
19 wt̃ ← wt ×N (θj

t̃j
|θ̄t̃, h2Id);

20 wc ← wc ×N (θjcj |θ̄c, h2Id);
21 end
22 u ∼ U[0,1];
23 if u < wc/wt̃ then
24 t̃← c;
25 θ̄t̃ ← θ̄c
26 end
27 end
28 θi ∼ Nd(θ̄t̃, h

2

M Id)

29 end
30 θ = W−1θ

Algorithm 5: NPDPE

It can be shown that the density product estimator π̂1...πM of π1...πM is consistent in

Mean Squared error i.e that MSE(π̂1...πM ) −→ 0 as T −→ ∞. Define the Hölder class

Σ(β,C), for β ≥ 1 and C > 0 to be the set of functions f : X 7−→ R l-times differentiable

for l = bβc such that

|f (l)(θ)− f (l)(θ′)| ≤ C||θ − θ′||β−l, ∀θ, θ′ ∈ X
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Let P(β,C) =
{
p ∈ Σ(β,C)|p ≥ 0,

∫
p(θ)dθ = 1

}
Assume that for all 1 ≤ m ≤ M , subposterior πm ∈ P(β,C) and ∃b > 0 s.t πm(θ) ≤ b,

∀θ ∈ X . Neiswanger et al. (2013) first derive an upper bound for the bias of their estimator

π̂1...πM of π1...πM .

The authors state and prove the following lemma. Our contribution is the explicit deriva-

tion of the upper-bound for |E[π̂m(θ)]− πm(θ)|.

Lemma 1.4.1.

sup
π1,...,πM∈P(β,C)

|E[π̂1...πM (θ)]− π1...πM (θ)| ≤
M∑
m=1

cmh
mβ

for some c1, ..., cM > 0

Proof. Let π1, ..., πm ∈ P(β,C),

|E[π̂1...πM (θ)]− π1...πM (θ)| = |E[π̂1(θ)...π̂M (θ)]− π1...πM (θ)|

= |E[π̂1(θ)]...E[π̂M (θ)]− π1...πM (θ)|

Now,

|E[π̂m(θ)]− πm(θ)| =

∣∣∣∣∣ 1

T

T∑
tm=1

∫
N (θ|θmtm , h

2Id)πm(θmtm)dθmtm − πm(θ)

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

T∑
tm=1

∫
N (θ|θmtm , h

2Id)(πm(θmtm)− πm(θ))dθmtm

∣∣∣∣∣
= c

∣∣∣∣∣
T∑

tm=1

∫
exp

{
1

2

( ||θmtm − θ||
h

)2
}

(πm(θmtm)− πm(θ))dθmtm

∣∣∣∣∣ , c > 0
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Let ym =
θmtm−θ
h . Then,

|E[π̂m(θ)]− πm(θ)| = c̃

∣∣∣∣∣
T∑

m=1

∫
exp

{
1

2
||ym||2

}
(πm(θ + hym)− πm(θ))dym

∣∣∣∣∣ , c̃ > 0

≤ c̃
T∑

m=1

∫
exp

{
1

2
||ym||2

}
|πm(θ + hym)− πm(θ)| dym

≤ c̃Chβ
T∑

m=1

∫
exp

{
1

2
||ym||2

}
|ym|dym, since πm ∈ P(β,C)

≤ c′mhβ, c′m > 0, since the moments of a Gaussian are bounded.

Hence,

|E[π̂1...πM (θ)]− π1...πM (θ)| = |E[π̂1(θ)]...E[π̂M (θ)]− π1...πM (θ)|

≤ |(π1(θ) + c′1h
β)...(πM (θ) + c′Mh

β)− π1...πM (θ)|

≤ |c1h
β + ...+ cMh

Mβ| where c1, ..., cM>0

≤ |c1h
β|+ ...+ |cMhMβ |

=
M∑
m=1

cmh
mβ

The authors then derive an upper bound for the variance of their density product

estimator. Our contribution to this proof is the explicit derivation of an upper-bound for

V[π̂m(θ)], ∀ 1 ≤ m ≤M .

Lemma 1.4.2.

sup
π1,...,πM∈P(β,C)

V[π̂1...πM (θ)] ≤
M∑
m=1

(
M

m

)
cm
Tm

hdm

for some c1, ..., cM > 0

Proof. Let us first derive an upper-bound for V[π̂m(θ)], θ ∈ X , 1 ≤ m ≤M .
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V[π̂m(θ)] ≤ E[π̂m(θ)2] = c
1

Th2d

T∑
tm=1

∫
exp

{( ||θmtm − θ||
h

)2
}
πm(θmtm)dθmtm , c > 0

Let ym =
θmtm−θ
h . Then,

V[π̂m(θ)] = c
hd

Th2d

T∑
m=1

∫
exp

{
||ym||2

}
πm(hym + θ)dym

≤ csupθ πm(θ)

Thd

T∑
m=1

∫
exp

{
||ym||2

}
dym

≤ c′m
Thd

Now,

V[π̂1...πm(θ)] = E[π̂1(θ)2]...E[π̂M (θ)2]− E[π̂1(θ)]2...E[π̂M (θ)]2

=

(
M∏
m=1

V[π̂m] + E[π̂m]2

)
−

(
M∏
m=1

E[π̂m]2

)

≤
M∑
m=0

(
M

m

)
c̃mcM−m

TM−mhd(M−m)
− c̃M

where c̃ = max{c1, ..., cM}, {c1, ..., cM} being the upper-bounds derived in lemma 1.4.1

and c = max{c′1, ..., c′M}

=
M−1∑
m=0

(
M

m

)
c̃mcM−m

TM−mhd(M−m)

≤
M∑
m=1

(
M

m

)
cm

Tmhdm
,where cm > 0 ∀m

Neiswanger et al. (2013) then use results from lemma 1.4.1 and 1.4.2 to derive an upper

bound on the Mean-Squared Error (MSE)
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Proposition 1.4.1. If h � T−1/(2β+d) then

sup
π1,...,πM∈P(β,C)

MSE(π̂1...πM (θ)) = sup
π1,...,πM∈P(β,C)

E
[∫

(π̂1...πM (θ)− π1...πM (θ))2dθ

]
≤ c

T 2β/(2β+d)
(1.23)

for c > 0 and 0 < h ≤ 1

Proof. For π1, ..., πM ∈ P(β,C), using the bias-variance decomposition of the MSE,

E
[∫

(π̂1...πM (θ)− π1...πM (θ))2dθ

]
≤

(
M∑
m=1

cmh
mb

)2

+

M∑
m=1

(
M

m

)
c̃m

Tmhdm
by lemma 1.4.1 and 1.4.2

≤ kT−2β/(2β+d) +
k̃

T 1−d(2β+d)
, for k, k̃ > 0

≤ c

T 2β/(2β+d)

Hence the estimator π̂1...πM is consistent since its MSE tends to 0 as T , the number

of samples, increases.
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1.5 Pseudo-Marginal MCMC

We now introduce the last algorithm of this dissertation.

1.5.1 General setting

In this section, we will review a large class of algorithms called pseudo-marginal MCMC.

These methods are called pseudo since they use an estimator L̂(z|θ, u) of the likelihood.

The auxiliary random variable u is used in order to derive the likelihood estimator but is

then integrated out of the posterior. Hence the name pseudo-marginal.

One natural way to derive such an estimator is to recall that the log-likelihood of condi-

tionally independent observations can be written as

l(θ) =

N∑
i=1

li(θ), where li(θ) := log p(zi|θ) (1.24)

and sample uniformly at random m indices u1, ..., um in {1, ..., N} where m� N to build

the unbiased estimator

l̂(θ, u) =
N

m

m∑
i=1

lui(θ) (1.25)

However, this simple technique generally yields a large variance. Besides, some of the

li’s should bring a significantly larger contribution to (1.24) than others. Hence, they

should be attributed a higher probability of being drawn. However, this would require

evaluating N likelihood weights at each iteration which would cancel the computational

gains of using l̂(θ, u) instead of l(θ). The idea of Quiroz et al. (2018) is to use some control

variates qi(θ) in order to make the variances of the li’s comparable so that drawing them

uniformly at random yields a good estimator. The derivation of the qi’s will be explained

in the next subsection.
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Hence, the estimator proposed by Quiroz et al. (2018) is

l̂(θ, u) := q(θ) +Nµ̂(θ, u) where q(θ) :=
N∑
i=1

qi(θ) and µ̂(θ, u) :=
1

m

m∑
i=1

lui(θ)− qui(θ)

(1.26)

We give the details (which are brief) for the proofs ofLemmas 1.5.1 and 1.5.2 as well

as Properties 1.5.1 and 1.5.2.

Lemma 1.5.1. l̂(θ, u) is an unbiased estimator of l(θ)

Proof.

• Eu[lui(θ)] =
∑N

u=1 P(ui = u)lu(θ) = 1
N

∑N
u=1 lu(θ) = 1

N l(θ)

• Similarly Eu[qui(θ)] = 1
N q(θ) by (1.26)

• Hence Eu[l̂(θ, u)] = q(θ) + N
m

∑m
i=1

1
N (l(θ)− q(θ)) = l(θ)

Lemma 1.5.2. σ2 := V ar(l̂(θ, u)) =
N2σ2

µ

m

where σ2
µ = V ar(lui(θ)− qui(θ)) = 1

N

∑N
i=1(li(θ)− qi(θ)− 1

N (l(θ)− q(θ)))2

Proof.

V ar(l̂(θ, u)) = N2V ar(µ̂(θ, u)) =
N2σ2

µ

m

Lemma 1.5.3. Asymptotically, when m → ∞ and N is fixed, l̂(θ, u) ∼ N
(
l(θ),

N2σ2
µ

m

)
,

assuming σ2
µ <∞.

Proof. Standard application of the Central Limit Theorem (CLT) as the ui’s are i.i.d and

σ2
µ <∞
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Thus Quiroz et al. (2018) have found an unbiased estimator l̂(θ, u) for the log-likehood

l(θ), with a variance they can attempt to control using q. Now, deriving an estimator

of the likelihood function L(θ) = exp{l(θ)} is not straightforward since E[exp{l̂(θ, u)}] 6=

exp{E[l̂(θ, u)]} in general. They propose the following estimator following Ceperley and

Dewing (1999) and Nicholls et al. (2012) :

L̂(θ, u) := exp

(
l̂(θ, u)− N2

2m
σ2
µ

)
(1.27)

Proposition 1.5.1. The estimator of the likelihood L̂(θ, u) defined in (1.27) is unbiased.

Proof.

E
[
L̂(θ, u)

]
=

E
[
exp

(
l̂(θ, u)

)]
exp

(
N2

2mσ
2
µ

)
Now, recall that if log(X) ∼ N (µ, σ2) then X ∼ logN (µ, σ2) and E[X] = exp(µ + σ2

2 ).

Hence,

E
[
L̂(θ, u)

]
=

exp
(
l(θ) + N2

2mσ
2
µ

)
exp

(
N2

2mσ
2
µ

) = L(θ)

In practice, computing exactly σ2
µ is not feasible as it must be computed at every

observation zi, which is what we want to bypass. Thus, Quiroz et al. (2018) use the

following estimate instead.

σ̂2
µ =

1

m

m∑
i=1

(
lui(θ)− qui(θ)−

1

m

m∑
i=1

(lui(θ)− qui(θ))

)2

Hence, the estimate derived in (1.27) where we plug the estimate σ̂2
µ is only expected

to be "nearly unbiased".
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We now show why pseudo-marginal MCMC with an unbiased estimator of the likelihood

targets the true posterior distribution π(θ|z).

Proposition 1.5.2. Let πu(.) and π̂(θ, u|z) denote the prior distribution on u and the

target posterior distribution when using the likelihood estimate (1.27). Then the marginal

distribution of the sampled θ’s,
∫
u π̂(θ, u|z)du is equal to the true posterior distribution

π(θ|z).

Proof.

π̂(θ, u|z) =
L̂(θ, u)π(θ)πu(u)

m(z)
(1.28)

where

m(z) =

∫
θ

∫
u
L̂(θ, u)π(θ)πu(u)dudθ =

∫
θ
π(θ)

∫
u
L̂(θ, u)πu(u)dudθ =

∫
θ
π(θ)L(θ)dθ

which is simply the usual marginal distribution of z, also called evidence, thanks to the

unbiasedness property of the likelihood estimator.

Hence we can write

m(z) =
L(θ)π(θ)

π(θ|z)
, where π(θ|z) denotes the true posterior. (1.29)

Plugging (1.29) into (1.28) we get

π̂(θ, u|z) =
L̂(θ, u)π(θ)πu(u)π(θ|z)

L(θ)π(θ)

π̂(θ, u|z) =
L̂(θ, u)πu(u)π(θ|z)

L(θ)
(1.30)
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Now, integrating out u from (1.30),

∫
u
π̂(θ, u|z)du =

π(θ|z)
L(θ)

∫
u
L̂(θ, u)πu(u)du = π(θ|z) (1.31)

by the unbiasedness of L̂(θ, u).

1.5.2 Choice of control variates qi(θ)’s

Assume we divide the dataset into K clusters Ck for k = 1, ...,K and derive the centroids

zck ∈ Rd×1 where d denotes the dimension of parameter θ. Quiroz et al. (2018) suggest

constructing qi as a second order Taylor approximation of li with respect to zi around the

centroids {zck}k. This gives

qi(θ) = q(zi; θ) = l(zck; θ) +∇zl(zck; θ)(zi − zck) +
1

2
(zi − zck)TH(zck : θ)(zi − zck), (1.32)

for zi belonging to cluster k, where l(zi; θ) := li(θ) = log p(zi|θ) and H denotes the Hessian

of the log-likelihood function at zck.

Quiroz et al. (2018) provide an efficient way to compute q(θ) =
∑N

i=1 qi(θ), which is

necessary in order to estimate l̂(θ, u). First of all,
∑N

i=1 qi(θ) is equal to

K∑
k=1

∑
i∈Ck

l(zck; θ) +
K∑
k=1

∑
i∈Ck

∇zl(zck; θ)(zi − zck) +
1

2

K∑
k=1

∑
i∈Ck

(zi − zck)TH(zck; θ)(zi − zck)

(1.33)

The authors show that each term can be simplified to a simple sum which does not

require going through the whole data set.
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• First term :

K∑
k=1

∑
i∈Ck

l(zck; θ) =
K∑
k=1

|Ck|l(zck; θ)

• Second term :

K∑
k=1

∑
i∈Ck

∇zl(zck; θ)(zi − zck) =
K∑
k=1

∇zl(zck; θ)
∑
i∈Ck

(zi − zck) = 0

• Third term : let bi = (zi − zck) ∈ Rd×1 and H(k) = H(zck; θ). Then

bTi H
(k)bi =

∑
s,t

H
(k)
st bisbit, by definition of a quadratic form.

Hence,

K∑
k=1

∑
i∈Ck

bTi H
(k)bi =

K∑
k=1

∑
i∈Ck

∑
s,t

H
(k)
st bisbit =

∑
s,t

 K∑
k=1

H
(k)
st

∑
i∈Ck

bisbit


Define B(k) ∈ Rd×d to be a matrix with elements {

∑
i∈Ck bijbik}jk. Then,

K∑
k=1

∑
i∈Ck

bTi H
(k)bi =

∑
vec

(
K∑
k=1

H(k) �B(k)

)

where � denotes the element-wise multiplication or Hadamard product and vec(A)

denotes the sum of the elements of any matrix A.

Note that since the b(k) do not depend on θ, they can be computed before the first iteration

only once. Thanks to this simplification, Quiroz et al. (2018) prevent heavy computations

by limiting the evaluation of the control variates to sums of K elements where K � N in

general.

The authors also give a complete derivation of the gradient and Hessian matrix of the

likelihood evaluated at the data for GLMs. In these computations, we found a typo that

leads to calculation errors. The interested reader can refer to the Appendix.
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Input : data z, Ck and ck clusters and centroids of data for k = 1, ...,K, T , m, θ0

Output: θ = {θt}Tt=0 asymptotically from π(θ|z) ∝ p(z|θ)π(θ)
1 Initialization;
2 for k = 1, ...,K do
3 Bk = 0d,d, null square matrix of dimension d;
4 for i ∈ Ck do
5 b← zi − ck;
6 Bk = Bk + bbt;
7 end
8 end
9 for t = 0, ..., T do

10 Draw without replacement minibatch X of size m;
11 Draw θp from symmetric proposal distribution;
12 for i = 1, ...,m do
13 k ← {k : Xi ∈ Ck};
14 dθti = log p(Xi|θt)− log p(ck|θt)−∇z log p(ck|θt)(zi − ck)−
15 1

2(Xi − ck)tHz(ck|θt)(Xi − ck);
16 dθpi = log p(Xi|θp)− log p(ck|θp)−∇z log p(ck|θp)(zi − ck)−
17 1

2(Xi − ck)tHz(ck|θp)(Xi − ck);
18 end
19 θ̄t ← 1

m

∑
dθti ;

20 σ2
t ← 1

m

∑
(dθti − θ̄t)

2;
21 θ̄p ← 1

m

∑
dθpi ;

22 σ2
p ← 1

m

∑
(dθpi − θ̄p)

2;
23 lθt ← 0;
24 lθp ← 0;
25 hθt ← 0;
26 hθp ← 0;
27 for k = 1, ...,K do
28 Nk = |Ck|;
29 lθt ← lθt +Nk log p(ck|θt);
30 lθp ← lθp +Nk log p(ck|θp);
31 hθt ← hθt +Hz(ck|θt)�Bk;
32 hθp ← hθp +Hz(ck|θp)�Bk;
33 end
34 qθt ← lθt + 1

2

∑
i

∑
j hθti,j ;

35 qθp ← lθp + 1
2

∑
i

∑
j hθpi,j ;

36 l̂θt ← qθt +Nθ̄t − N2

2mσ
2
t ;

37 l̂θp ← qθp +Nθ̄p − N2

2mσ
2
p;

38 α← l̂θp + log π(θp)− l̂θt − log π(θt);
39 u ∼ U[0,1];
40 if α ≥ log(u) then
41 θt+1 = θp;
42 else
43 θt+1 = θt;
44 end
45 end

Algorithm 6: Pseudo-Marginal MCMC
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Chapter 2

Experiments

In this section, we will attempt to assess the algorithms discussed in Chapter 1, namely

three approximate sub-sampling algorithms (ApMHT, Pseudo-Marginal MCMC and SGLD)

and two parallel MCMC algorithms (Consensus-Monte Carlo and NPDPE). Our assess-

ment method is described in the next section.

2.1 Methodology

For each synthetic model we consider, our main concerns are to know whether the algo-

rithms do target the right posterior distribution, how accurate is their approximation of

the latter, and finally how efficient they are.

2.1.1 Accuracy of the algorithms

Since it would not be sensible to compare on an equal footing two algorithms whose qual-

ities of approximation of the posterior distribution are significantly different, we have to

measure how accurate each algorithm is.

Therefore, we will generate a reference posterior distribution that we will abusively call

true posterior from a very large number of exact Metropolis-Hastings samples. This will
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allow us to estimate how close our algorithms’ outputs are to the true posterior thanks

to a discrepancy measure, which we choose to be the Hellinger distance (Hellinger (1909))

defined as follows.

Let P and Q be two probability measures absolutely continuous w.r.t the Lebesgue mea-

sure µ. Then the Hellinger distance between P and Q is

H(P,Q) =
1

2

∫
(
√
p−√q)2dµ

Where p and q are the Radon-Nikodym derivatives (or probability density functions) of P

and Q respectively.

We could have used other popular metrics such as the K-L divergence. However, the

Hellinger distance, as a distance, is symmetric and easier to interpret.

2.1.2 Efficiency of the algorithms

We will use the Effective Sample Size (ESS) as a measure of efficiency. It is defined as

ESS =
T

1 + 2
∑T−1

k=1 ρ(k)

where ρ(k) denotes the correlation at lag k and T is the length of the Markov chain.

Hence the ESS is the number of independent samples that would give the same variance

reduction as our T correlated MCMC samples: the larger the ESS for a given T , the more

efficient is the algorithm.

However, we also need a measure of the computational cost of each algorithm. It is tempt-

ing to choose the running time for the sake of clarity and ease of comprehension. Yet, it

might not be fair to do so as our implementation of the algorithms is probably not optimal.

Hence we use the number of full likelihood evaluations required to perform each algorithm.
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We call a "likelihood evaluation" an evaluation of the likelihood function (or log-likelihood)

on a single data point. We then divide the total number of likelihood evaluations by N , the

data set size, so that 1 standardised likelihood evaluation, or full likelihood evaluation, is

equivalent to the evaluation of the likelihood function on the whole data set. For example,

when T = 20000, our measure of computational cost for Metropolis-Hastings will be T

runs * N single-point likelihood evaluations/N = 20000 (cf Algorithm 1).

Hence, we set our efficiency assessment criterion to be the ESS per standardised likelihood

evaluation, as it will penalise methods that require many likelihood evaluations and reward

those which yield a large number of independent samples.

On deriving the number of standardised likelihood evaluations.

We provide a summary table giving the number of standardised likelihood evaluations

necessary to perform T iterations of each algorithm on a data set of size N .

Number of standardised likelihood evaluations
ApMHT random

Pseudo-Marginal T (4K + 8m)/N

SGLD 2Tm/N1 or Tm/N2

Consensus MC T/M

NPDPE T/M

Table 2.1: Algorithms’ number of standardised likelihood evaluations for a data set of
size N and a number of iteration T

These values can easily be derived when looking at the pseudo-code of each algorithms.

Note that the numerical evaluation of the gradient function of the likelihood requires two

likelihood evaluations.

In practice, it is easier to derive analytically the gradient of the likelihood function with

respect to z that to θ since the normalising constant in θ is often intractable.

Therefore, in order to mimic real scientific scenarios, we compute analytically the gradient

function and the Hessian matrix of the likelihood with respect to z for the Pseudo-Marginal
1In the case of a numerical approximation of the gradient
2In the case of an analytic evaluation of the gradient
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algorithm, as required.

However, for SGLD, we compute it numerically, as the gradient of the likelihood must be

computed with respect to θ. Besides, we were not able to formally compute the gradient

function at θ analytically for the models introduced in Sections 2.3 and 2.4 as the likelihood

functions for these Data Generating Processes (DGP) involve the absolute value of θ.

For algorithm ApMHT, it is easy to see that the number of required likelihood evaluations

is random. In order to compute this value, we use the variable number_llik_eval (cf

algorithm 2) which counts the number of data points necessary to pass the test "δ <

ε". We then multibply this variable by 2 to account for the fact that the likelihood is

evaluated at both the candidate θ′ and the current state θt in this algorithm. Note that the

algorithm in the form we gave it requires more likelihood evaluations - this is for simplicity

of presentation. It is straightforward to store and re-use single-point likelihood evaluations

on earlier batches. Hence it is more fair to use variable number_llik_eval instead of the

actual number of likelihood evaluations performed by our personal implementation of the

algorithm.

2.1.3 Convergence of the algorithms

Our last concern will be to determine whether the output of our algorithms is distributed

according to the posterior distribution. To do so, we will check posterior consistency by

applying the idea of Geweke (2004) which we describe below. This idea was then developed

and extended to an actual test by Talts et al. (2018).

Theorem 2.1.1. Let π(θ), p(z|θ) and π(θ|z) denote the prior, the likelihood and the

posterior distributions of θ respectively.
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Let

φ ∼ π(.)

z′ ∼ p(.|φ) and

θ ∼ π(.|z′)

Then the marginal distribution p(θ) of θ is equal to the prior distribution of θ, π(θ).

Proof.

p(θ) =

∫
Θ

∫
Z
π(φ)p(z′|φ)π(θ|z′)dz′dφ

= π(θ)

∫
Θ

∫
Z

π(φ)p(z′|φ)p(z′|θ)
p(z′)

dz′dφ

= π(θ) (2.1)

Hence, if we simulate a sample {θi}Ti=1 from the above procedure, we should expect it to

be distributed according to the prior distribution π(.), which can easily be checked with a

non-parametric test like the Kolmogorov-Smirnov test (Kolmogorov (1933)).

Note that in addition to π(θ|z), it is easy to see that π(θ) is also a solution to the integral

equation ∫
Θ

∫
Z
π(φ)p(z′|φ)f(θ)dz′dφ = π(θ) (2.2)

which is to be solved for f(θ).

However, we were not able to prove formally that those were the only two solutions of

(2.2). Yet, if we assume that they are, then the only way Geweke (2004)’s test could go

wrong is if an algorithm happened to produce samples distributed according to the prior,

which seems very unlikely.

Our comparison methodology is given below. The procedure implemented in order to

choose the algorithms’ parameter values was designed to mimic as best as possible how
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these parameters might be tuned in real applications.

For a fixed number of iterations T ,

1. When possible, we tune the algorithm parameters in order to achieve a reasonable

Hellinger distance to the true posterior, using the first column of table 2.2. Note that

some algorithms do not produce a good approximation when confronted to particular

data sets no matter what parameter value is chosen.

2. For the algorithms whose outputs do yield a good enough approximation, we tune

the parameters of the second column of table 2.2 in order to maximise the ESS per

standardised likelihood evaluation, trying not to increase the approximation error

significantly.

3. We then perform Geweke (2004)’s test in order to check if posterior consistency holds

for a fixed number T of generated samples.

4. Finally, we report for each algorithm the ESS per standardised likelihood evaluation

and the Hellinger distance to the true posterior.

Parameter responsible mainly for...

Approximation Effective
error Sample size

ApMHT ε RW jump size
Pseudo-Marginal K,m RW jump size

SGLD ε,m ε

Consensus MC - RW jump size
NPDPE h RW jump size

Table 2.2: Summary of the role of each tuning parameter

Our choice of random walk (RW) proposals may be criticised as just comparing the

algorithms efficiency for one proposal scheme. This is true. However, it is a very common

choice and its sumplicity allows us to focus on the algorithms rather than the details of

the updating process.
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2.2 Test data set - Normal posterior

We start our analysis by what could be called a "trivial" model in order to check that all

our algorithms were correctly implemented and that they produce a good approximation

of the posterior distribution in the most simple cases.

2.2.1 Data Generating Process

Here we consider a model in which the data follows a normal distribution whose mean

parameter θ is to be inferred. The model considered is constructed as follows.

p(zi|θ) = N (zi; θ, σ
2), for i = 1, ..., N Likelihood (2.3)

π(θ) = N (θ; 1, s2) Prior distribution (2.4)

Where σ2=1 and s2 = 1. We choose 1 to be the true value of θ

This model trivially leads to a normal posterior as the normal distribution is its own

conjugate. For this model we set the number of iteration T to 20000 and the data set size

N to 10000.

2.2.2 Results

The format of Figure 2.2 (which is repeated in the experiments below) is as follows. In

each row of three graphs, the upper-left plot represents the true target in red and the ap-

proximation in blue. The MCMC trace of θ is given below. The right-hand-side plot shows

a simulation from the prior, and the marginal of θ as obtained from the Geweke (2004)’s

test described earlier. Recall that those two curves should be similar in case of success.

Figure 2.2 does not reveal any issue. All five algorithms have produced a good approxima-

tion of the true posterior and have successfully passed Geweke (2004)’s test, which is what
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Table 2.3: Summary

Parameter Geweke (2004)’s Hellinger ESS/
tuning test : distance std. likelihood

Fail/Pass from true posterior evaluation
MH - - 0.00073 2982.69

20000 = 0.15

ApMHT ε = 0.05 Pass 0.0020 3447.73
22791.6 = 0.151

Pseudo-marginal m=300 Pass 0.0019 3425.30
5224 = 0.66

K=53
SGLD ε = 0.0002 Pass 0.00062 19584.3

20000 = 0.98
m=5000

Consensus MC M=10 Pass 0.0011 3308.06
2000 = 1.65

NPDPE M=10 Pass 0.0055 125.97
2000 = 0.063

h=0.01

we expected. Plot (i) shows a relatively poorer mixing of NPDPE which is reflected by a

lower ESS in Table 2.3. Overall this table and Figure 2.1 reveal good performances with

a clear dominance of Consensus Monte Carlo in terms ESS per standardised likelihood

evaluations, followed closely by SGLD. In terms of quality of approximation, SGLD seems

to perform even better than MH itself.

When compared to its counterparts, NPDPE shows rather disappointing results. In partic-

ular, it is the only algorithm which does not beat MH in terms of ESS per std. likelihood

evaluation.
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Figure 2.1: Log of Hellinger distance vs log of ESS per std. likelihood evaluation
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Figure 2.2: Summary plots

(a) ApMHT diagnostics (b) ApMHT Geweke (2004)’s test, p-value=0.63

(c) Pseudo-Marginal diagnostics (d) PM Geweke (2004)’s test, p-value=0.13

(e) SGLD diagnostics (f) SGLD Geweke (2004)’s test, p-value=0.77

(g) Consensus diagnostics (h) Consensus Geweke (2004)’s test, p-value=0.20
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Figure 2.2: continued

(i) NPDPE diagnostics (j) NPDPE Geweke (2004)’s test, p-value=0.72

2.3 Bimodal - High variance

In this section, we wish to design a model whose posterior distribution is bimodal such

that the probability density between the two modes is not too low. Since normality does

not hold in this case, we can test the adaptability of Consensus Monte-Carlo which relies

heavily on this assumption. It will also be interesting to see whether gradient methods

like SGLD are able to mix properly or if, on the contrary, they will get stuck in one of

the modes. More generally, this model should be a challenge to the mixing abilities of our

algorithms.

2.3.1 Data Generating Process

The model considered is constructed as follows

p(zi|θ) = N (zi; |θ|, σ2), for i = 1, ..., N Likelihood (2.5)

π(θ) = N (θ; 0, s2) Prior distribution (2.6)

Where σ2=20 and s2 = 0.32.
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Hence, the posterior given one observation zi is of the form

π(θ|zi) ∝ exp

{
− 1

σ2
(zi − |θ|)2

}
× exp

{
−|θ|

2

2s2

}
∝ exp

{
−

(1 + σ2

s2
)

2
(|θ| − (1 +

σ2

s2
)−1zi)

2

}

which is bimodal in θ with the two modes being symmetric around 0. We choose

θ = 0.1 so that the area of low posterior probability between the two modes is not too

large to prevent good mixing. For this model we set T = 20000 and the data set size

N = 10000.

2.3.2 Results

We attempt to tune each algorithm’s parameters so that their Hellinger distance from the

true posterior is below 0.01. As can be seen in Table 2.4 we did not manage to tune SGLD

parameter ε in order to achieve this goal but the Hellinger distance for this algorithm

can be considered close enough. On the contrary, some algorithms like Pseudo-marginal

MCMC are quite far below the chosen threshold.

As can be seen on Figure 2.4, all algorithms have successfully passed Geweke (2004)’s test

except Consensus Monte-Carlo. This could be expected as the technique derived by Scott

et al. (2016) relies heavily on the assumption that normality holds, which is clearly not the

case here. Conversely, its parallel counterpart NPDPE seems to have worked in a better

way probably thanks to its non-parametric property. Surprisingly, SGLD does seem to

have made a good approximation of the true posterior, although we expected it to get

stuck in one of the modes.

The trace plots indicate rather good mixing even though NPDPE’s performance in that

matter seems weaker.

When we look at the number of standardised likelihood evaluations we see that Pseudo-
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Marginal MCMC is undeniably more efficient. When it comes to ESS, we can spot no

real outlier although we should highlight the rather poor performance of NPDPE, which

we could already infer from the trace plot.

Overall, when looking at the ESS per standardised likelihood evaluation, it is clear that

Pseudo-Marginal MCMC outperformed the other algorithms on this synthetic data set.

Table 2.4: Summary

Parameter Geweke (2004)’s Hellinger ESS/
tuning test : distance std. likelihood

Fail/Pass from true posterior evaluation
MH - - 0.0012 2627.75

20000 = 0.13

ApMHT ε = 0.05 Pass 0.0018 2589.55
19130.2 = 0.14

Pseudo-marginal m=100 Pass 0.00083 1614.1
3120 = 0.52

K=190
SGLD ε = 0.05 Pass 0.012 1361.1

20000 = 0.07
m=5000

Consensus MC M=10 Fail 0.086* 2418.326
2000 = 1.21*

NPDPE M=10 Pass 0.0012 306.97
2000 = 0.15

h=0.1
*These values are not relevant as the algorithm did not pass Geweke (2004)’s test.

Figure 2.3: Log of Hellinger distance vs log of ESS per std. likelihood evaluation
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Figure 2.4: Summary plots

(a) ApMHT diagnostics (b) ApMHT Geweke (2004)’s test, p-value=0.97

(c) Pseudo-Marginal diagnostics (d) PM Geweke (2004)’s test, p-value=0.17

(e) SGLD diagnostics (f) SGLD Geweke (2004)’s test, p-value=0.89

(g) Consensus diagnostics
(h) Consensus Geweke (2004)’s test, p-
value=0
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Figure 2.4: continued

(i) NPDPE diagnostics
(j) NPDPE Geweke (2004)’s test, p-
value=0.92

2.4 Bimodal - Low variance

In this section, we repeat a similar experiment of bimodality. However, we truly separate

the modes by an area of low probability. This should pose a true challenge for MCMC

algorithms that do not propose new candidates according to a random walk as they may not

be able to cross this artificial low porobability "bridge". In particular, it will be interesting

to see how SGLD, which performed surprinsingly well in the previous experiment, cope

with this situation.

2.4.1 Data Generating Process

We repeat the scheme of the previous section setting this time σ2 = 1. Thanks to this

trick, the posterior distribution should be much more concentrated around the modes.

p(zi|θ) = N (zi; |θ|, σ2), for i = 1, ..., N Likelihood (2.7)

π(θ) = N (θ; 0, s2) Prior distribution (2.8)
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Table 2.5: Summary

Parameter Geweke (2004)’s Hellinger ESS/
tuning test : distance std. likelihood

Fail/Pass from true posterior evaluation
MH - - 0.013 20.72

20000 = 0.001

ApMHT ε = 0.05 Pass 0.016 125.56
26537 = 0.005

Pseudo-marginal m=200 Pass 0.003 168.08
3632 = 0.046

K=54
SGLD ε = 2.25 ∗ 10−4 Fail 0.31 25588.15

20000 = 1.28*
m=5000

Consensus MC M=3 Fail 0.83 2031.54
6666 = 0.30*

NPDPE M=3 Fail 0.25 1609.33
6666 = 0.24*

h=0.07
*These values are not relevant as the algorithm did not pass Geweke (2004)’s test.

Where σ2=1 and s2 = 0.32. For this model we set T = 20000 and the data set size

N = 10000

2.4.2 Results

Figure 2.6 indicates that ApMHT and Pseudo-marginal MCMC seem to give the best ap-

proximations of the true posterior. They are also the only two methods that successfully

pass Geweke (2004)’s test.

As to the other algorithms, we can see that, as feared, SGLD got stuck in one mode whereas

consensus Monte-Carlo unsurprisingly produced an erroneous approximation based on the

Bernstein-von Mises theorem. However, we can see that NPDPE almost succeeded in

approximating the two mode-scheme but clearly overestimated the variance of the poste-

rior. When ignoring the algorithms which did not converge to the posterior, Table 2.5 and

Figure 2.5 show a clear dominance of Pseudo-Marginal MCMC both in terms of quality

of approximation and efficiency, followed by ApMHT. Both algorithms yield an equal or

better Hellinger distance to the posterior than MH and a substantially higher ESS per std.

likelihood evaluation.
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Figure 2.5: Log of Hellinger distance vs log of ESS per std. likelihood evaluation
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Figure 2.6: Summary plots

(a) ApMHT diagnostics (b) ApMHT Geweke (2004)’s test, p-value=0.37

(c) Pseudo-Marginal diagnostics (d) PM Geweke (2004)’s test, p-value=0.88

(e) SGLD diagnostics (f) SGLD Geweke (2004)’s test, p-value=0

(g) Consensus diagnostics (h) Consensus Geweke (2004)’s test, p-value=0
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Figure 2.6: continued

(i) NPDPE diagnostics (j) NPDPE Geweke (2004)’s test, p-value=0

2.5 High-dimensional logistic regression

This final experiment will give us a more concrete insight into real world problems as we

will now consider a fairly high dimensional logistic regression with a relatively low amount

of data. It might seem surprising to set N = 1000 when our main interest are tall data sets

but we wished to reflect the common situation when the number of parameters to estimate,

in our case 20, combined with a ’small’ amount of data makes accurate inference difficult

to achieve. However, the conclusions we will draw from this experiment can easily be

extended to situations where say N = 100000 and the number of parameters is d = 1000.

This setting also enables us to confront our algorithms with rather fat-tailed posterior

distribution, which has not been done previously. In such situations we expect mixing to

be difficult for the algorithms which propose updates according to a random walk, even

with a large step-size.

2.5.1 Data Generating Process

In this section, we artificially create a logistic regression setting. To do so, we first sample

our true parameters as follows,

θ ∼ Nd(0, 1)
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where d = 20.

We then generate the covariates xi = (x1i, ..., x20i) for i = 1, ..., 1000 each independently

from a standard Normal distribution.

Finally,

zi ∼ B(πi)

where

πi =
eθ1x1i+...+θ20x20i

1 + eθ1x1i+...+θ20x20i

and B(πi) denotes the Bernoulli distribution of mean πi.

For this experiment, we choose to set T = 20000 and simulate our true posterior from

2,000,000 runs of standard random-walk MH. Moreover, we choose the prior distribution

π to be standard multivariate normal.

2.5.2 Results

So as to provide clear and meaningful plots, Figure 2.8 shows contour lines of the marginal

distributions of θ2 and θ4 only, and all other measures of assessment including Geweke

(2004)’s test are carried out on the marginal distribution of θ2. As can be seen on the

summary plots (Figure 2.8) most algorithms seem to have produced a good enough ap-

proximation of the true posterior, even though the marginals sampled by NPDPE look

somewhat shifted. Nevertheless, all Geweke (2004)’s tests suggest that samples were in-

deed drawn from the posterior distribution. Overall, Table 2.6 and Figure 2.7 show very

strong performances in term of approximation and efficiency for SGLD when compared

to its counterparts. The facts that the mixing of all other algorithms is poorer tends to

indicate that another proposal distribution should be used instead of a random walk. In

particular, a Langevin proposal might be more efficient, as suggested by the achievements

of SGLD. Therefore, we cannot discard these algorithms as their performances might be

enhanced by a more suitable choice of proposal distribution.
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Table 2.6: Summary

Parameter Geweke (2004)’s Hellinger ESS/
tuning test : distance std. likelihood

Fail/Pass from true posterior evaluation
MH - - 0.0024 273.50

20000 = 0.014

ApMHT ε = 0.05 Pass 0.0054 273.70
25840.8 = 0.011

Pseudo-marginal m=100 Pass 0.0027 185.10
28240 = 0.0066

K=153
SGLD ε = 0.022 Pass 0.00042 20685.87

20000 = 1.03
m=500

Consensus MC M=3 Pass 0.015 375.23
6660 = 0.056

NPDPE M=3 Pass 0.025 510.05
6660 = 0.077

h=0.07

Figure 2.7: Log of Hellinger distance vs log of ESS per std. likelihood evaluation
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Figure 2.8: Summary plots

(a) ApMHT diagnostics (b) ApMHT Geweke (2004)’s test, p-value=0.50

(c) Pseudo-Marginal diagnostics (d) PM Geweke (2004)’s test, p-value=0.23

(e) SGLD diagnostics (f) SGLD Geweke (2004)’s test, p-value=0.26

(g) Consensus diagnostics (h) Consensus Geweke (2004)’s test, p-value=0.72
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Figure 2.8: continued

(i) NPDPE diagnostics (j) NPDPE Geweke (2004)’s test, p-value=0.17

57



Conclusions and future work

Conclusions

During this study, we have been able to implement several recent algorithms designed to

improve traditional MCMC methods when confronted to tall data sets in a sample Bayesian

setting. The different experiments we carried out led us to the following conclusions.

Consensus Monte Carlo is a very easy algorithm to implement which performs surpris-

ingly well, providing some conditions are met. It indeed turned out to be very dependent

on the assumption that the Bernstein-Von Mises theorem holds. When this condition is

satisfied, it generally outperforms most of its counterparts in terms of ESS per std like-

lihood evaluation, even though its approximation error is usually slightly higher. On the

other hand, more complex frameworks such as bimodality really hindered a correct poste-

rior sampling. Therefore, we highly recommend its use for simple models especially if the

user has access to a high number of computational units. In our examples, we set M = 3

as typical laptops will have either 2 or 4 cores (assuming they cannot run more than 1

thread at a time). However, one can easily imagine implementing the algorithm with large

values of M , which would improve efficiency even more.

We picked our second divide and conquer algorithm, NPDPE, as a more flexible al-

ternative to Consensus Monte Carlo. Despite its tedious implementation, this method did
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prove itself able to adapt to more scenarios than its other parallel counterpart and only

failed the Geweke (2004)’s test once in the context of an extreme experimental design.

Although it has suffered from poor mixing and relatively high approximation errors, the

last experiment showed its ability to perform well where the other methods experienced

difficulties. As for consensus Monte Carlo, its number of required likelihood evaluations

makes it a mighty tool when confronted to large data sets.

SGLD, a rejection-free algorithm, was our only algorithm whose proposal distribution

moved along the gradient of the posterior distribution. Thus, we had concerns as to its

ability to mix properly when confronted to multimodality or posteriors with a complex

geometry. However, this simple algorithm performed remarkably well on our first bimodal

example as it succeeded not to get trapped in one of the modes, although its efficiency was

not among the best. Moreover, it outperformed by far the other methods on the logistic

regression experiment, both in terms of approximation error (beating Metropolis-Hastings

itself) and of ESS per std likelihood evaluations. Its performances on our test data set

were also remarkable.

Pseudo-marginal MCMC is probably the most consistent and reliable algorithm we

have implemented. It passed the Geweke (2004)’s test for all experiments and yielded

the best approximation error and ESS per std likelihood evaluation for both our bimodal

experimental settings. Its poorer mixing on the last experiment would probably be im-

proved with a more suitable choice of proposal distribution. Its downside however is that

it requires to derive the gradient and Hessian matrix of the likelihood function evaluated

at the data analytically. If those quantities had to be computed numerically, one should

expect a high increase in the number of required likelihood evaluations.

Finally, ApMHT, which is a rather intuitive algorithm, showed it had a great adapt-
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ability to most situations. Like for Pseudo-marginal MCMC, no test suggested that it did

not sample from the posterior distribution. Although it has never been the top-performing

algorithm, it showed great consistency across the different synthetic models we designed.

However, MH sometimes proved itself more efficient than ApMHT.

We sum up all our conclusions in Table 2.7 where we mention the principal features

of each algorithm and also provide a personal feeling regarding the level of difficulty of

implementation for each method.

Future work

Throughout our analysis, we tried to give a useful insight into how modern MCMC tech-

niques could tackle the challenges Bayesian inference has been facing since the advent of

Big Data.

Some additional content might have been interesting to provide. In particular, it would

be interesting to know whether the number of required likelihood evaluations is a linear or

sub-linear function of the data set size N . To give a simple overview of the situation, we

provide Figure 2.9. These curves were derived using our first model (test data set) by using

the number of likelihood evaluations indicated in Table 2.7 below. For Consensus Monte

Carlo and NPDPE we assumed the user had M=10 machines available. By looking at our

previous experiments’ tuning parameters values we make the assumptions that m = 0.5N

for SGLD and K = 0.05N , m = 0.02N for Pseudo-Marginal MCMC. For ApMHT we

had to run simulations for different values of N as the number of likelihood evaluations is

random.

Making these strong assumptions, we can see that only ApMHT’s curve seems to be a

sub-linear function of N . However the curves of SGLD and Pseudo-Marginal represent

here a worst-case scenario as the values m and K should be tuned for each data set size

N . Hence, some further work should be done in order to produce similar plots on different
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data sets, making sure that the parameters of each algorithm are properly tuned for each

value of N .

Figure 2.9: Log of Hellinger distance vs log of ESS per std. likelihood evaluation

One should also consider using different ways of proposing a candidate θ′ for all the

algorithms except SGLD. We have indeed seen in our last experiment that the choice of

proposal distribution is essential for good mixing and satisfactory performances.

A lot of additional work out of the scope of this study could be carried out in order

produce a complete overview of the current state of research in this domain. For instance,

other recent approaches like the rejection-free Bouncy Particle Sampler by Bouchard-Côté

et al. (2017) samples exactly from the posterior distribution and shows really promising

results.

One should also consider comparing the MCMC methods we implemented to other popular

tools designed to perform approximate Bayesian inference like Variational inference (e.g

Jain et al. (2018)) or Expectation propagation (see Minka (2001)).
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Table 2.7: Summary table

ApMHT (RW) Pseudo-Marginal (RW) SGLD Consensus (RW) NPDPE (RW)

Exact posterior Approximate Approximate Approximate Asym. exact Approximate

sampling ? Asym. exact as ε→ 0 Asym. exact as m→ N Asym. exact as m→ N if B-vM theorem holds

Number of likelihood random T (4K + 8m)* Tm* TN/M TN/M

evaluations

Difficulty of Easy Difficult* Medium* Easy Medium

implementation

Normal AE** = 4th AE=3rd AE =1st AE =2nd AE =5th

model ESS/llik*** = 4th ESS/llik=3rd ESS/llik =2nd ESS/llik =1st ESS/llik =5th

Bimodal model AE = 3rd AE=1st AE =4th Fail AE =2nd

high variance ESS/llik = 3rd ESS/llik=1st ESS/llik =4th ESS/llik =2rd

Bimodal model AE = 2nd AE=1st Fail Fail Fail

low variance ESS/llik = 2nd ESS/llik=1st

High dimensional AE = 3rd AE=2nd AE =1st AE =4nd AE =5th

logistic reg. model ESS/llik = 4th ESS/llik=5th ESS/llik =1st ESS/llik =3rd ESS/llik =2nd

*Assuming the gradient and the Hessian matrix are computed analytically

**Ranking of the algorithms according to their ability to minimize the approximation error (AE)

***Ranking of the algorithms according to their ability to maximise the ESS per std likelihood evaluation (ESS/llik)
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Appendix A

Miscellaneous

A.1 Proof of theorem 1.1.1 by Korattikara et al. (2014)

Following is a screenshot of the proof provided by Korattikara et al. (2014) in their article.

The Markov transition kernel they define seems to be wrong as it should be equal to

Pa(θ, θ
′)q(θ′|θ) +

(
1−

∫
θ′
Pa(θ, θ

′)q(θ′|θ)dθ′
)
δθ(θ

′)

following the notation of the authors.

This mistake changes the proof dramatically but the obtained result is the same, as we

have shown.
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Figure A.1: Screenshot of the proof of Theorem 1.1.1 as given by Korattikara et al. (2014)

A.2 Derivation of the Gradient and Hessian matrix for GLM

by Quiroz et al. (2018)

In their appendix, Quiroz et al. (2018) give an indication on how to compute the control

variates for a Generalised Linear Model (GLM). However, it seems like their derivation of

the gradient function is wrong.

Using the notation of the original article (cf Figure A.2) we indeed find that

∂l

∂x
=
θk′−1(xT θ)g′(Ψ)

g(Ψ)
+ T (y)θk′−1(xT θ)b′(Ψ) (A.1)

=

(
g′(Ψ)

g(Ψ)
k′−1(xT θ) + T (y)k′−1(xT θ)b′(Ψ)

)
θ (A.2)

by applying the chain rule.
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Figure A.2: Screenshot of the appendix of Quiroz et al. (2018)
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Appendix B

R code
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B.1 Libraries

library(mvtnorm)

library(coda)

library(ggpubr)

library(coda)

library(rootSolve)

library(ggplot2)

library(plyr)

B.2 DGP 1 : Test data - Normal Model

B.2.1 Parameters

n=1e4

theta=1

y=rnorm(n,theta)

z=as.matrix(y)

B.2.2 DGP and model functions

llik<-function (i,z,theta) {

return(dnorm(z[i],mean=theta, log=TRUE))

}

#likelihood for the Pseudo-marginal algorithn

llik<-function (z,theta) {

return(dnorm(z,mean=theta, log=TRUE))

}

log_prior<-function(theta) {
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return(dnorm(theta,mean=1, sd=0.3,log=TRUE))

}

gradient_llik<-function(z,theta) {

return(-(z-theta))

}

hessian_llik<-function(z,theta) {

return(rep(-1,length(z)))

}

B.3 DGP 2 : Bimodal - High Variance

B.3.1 Parameters

theta=0.1

sigma=20

n=1e4

B.3.2 DGP and model functions

y=rnorm(n,mean=abs(theta),sigma)

z=as.matrix(y)

llik<-function (i,z,theta) {

return(dnorm(z[i],mean=abs(theta),sigma, log=TRUE))

}

#Likelihood for the Pseudo-Marginal algorithm

llik<-function (z,theta) {

return(dnorm(z,mean=abs(theta), sd=sigma, log=TRUE))

}

log_prior<-function(theta) {
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return(dnorm(theta,mean=0,0.3,log=T))

}

gradient_llik<-function(z,theta) {

return(-(1/sigma^2)*(z-abs(theta)))

}

hessian_llik<-function(z,theta) {

return(rep(-(1/sigma^2),length(z)))

}

B.4 DGP 3 : Bimodal - Low variance

B.4.1 Parameters

theta=0.1

sigma=1

n=1e4

B.4.2 DGP and model functions

y=rnorm(n,mean=abs(theta),sigma)

z=as.matrix(y)

llik<-function (i,z,theta) {

return(dnorm(z[i],mean=abs(theta),sigma, log=TRUE))

}

#Likelihood for Pseudo-Marginal algorithm

llik<-function (z,theta) {

return(dnorm(z,mean=abs(theta), sd=sigma, log=TRUE))

}

log_prior<-function(theta) {
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return(dnorm(theta,mean=0,0.3,log=T))

}

gradient_llik<-function(z,theta) {

return(-(1/sigma^2)*(z-abs(theta)))

}

hessian_llik<-function(z,theta) {

return(rep(-(1/sigma^2),length(z)))

}

B.5 DGP 4 : High-dimensional logistic regression

B.5.1 Parameters

n=1000

d=20

theta=rnorm(d)

B.5.2 DGP and model functions

x=matrix(NA,n,d)

for (i in (1:d))

x[,i]=rnorm(n)

pr=1/(1+exp(-x%*%theta))

y=rbinom(n,1,pr)

z=as.matrix(y)

llik<-function (i,z,theta) {

l=1/(1+exp(-x[i,]%*%theta))

out=l^(z[i,])*(1-l)^(1-z[i,])

return(log(out))
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}

log_prior<-function(theta) {

return(dmvnorm(theta,log=TRUE))

}

sigmoid<-function(x){

return(1/(1+exp(-x)))

}

firstDerivSigmoid<-function(x){

return(sigmoid(x)*(1-sigmoid(x)))

}

secondDerivSigmoid<-function(x){

return(sigmoid(x)*(1-sigmoid(x))*(1-2*sigmoid(x)))

}

inv_logistic<-function(x) {

return(log(x/(1-x)))

}

firstDerivinv_logistic<-function(x) {

return(1/(x*(1-x)))

}

secondDerivinv_logistic<-function(x) {

return((2*x-1)/(x*x*(1-x)*(1-x)))

}

#likelihood function for Pseudo-marginal algorithm

llik <- function(z,theta) {

return(log(1-sigmoid(z[(1:d)]%*%theta))+z[d+1]*(z[(1:d)]%*%theta))

}

gradient_llik<-function(z,theta) {

return(c(z[(1:d)]%*%theta,

as.vector(-firstDerivSigmoid(z[(1:d)]%*%theta)/

(1-sigmoid(z[(1:d)]%*%theta))+
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firstDerivSigmoid(z[(1:d)]%*%theta)*

firstDerivinv_logistic(sigmoid(z[(1:d)]%*%theta))*

z[d+1])%*%theta))

}

hessian_llik<-function(z,theta) {

H=matrix(NA, d+1, d+1)

H[1,1]=0

H[1,(2:(d+1))]=c(firstDerivinv_logistic(sigmoid(z[(1:d)]%*%theta))*

firstDerivSigmoid(z[(1:d)]%*%theta))%*%theta

H[(2:(d+1)),1]=c(firstDerivinv_logistic(sigmoid(z[(1:d)]%*%theta))*

firstDerivSigmoid(z[(1:d)]%*%theta))%*%theta

H[(2:(d+1)),(2:(d+1))]=c(-firstDerivSigmoid(z[(1:d)]%*%theta)^2/

(1-sigmoid(z[(1:d)]%*%theta))^2-

secondDerivSigmoid(z[(1:d)]%*%theta)/

(1-sigmoid(z[(1:d)]%*%theta))+

(secondDerivinv_logistic(sigmoid(z[(1:d)]%*%theta))*

firstDerivSigmoid(z[(1:d)]%*%theta)^2+

secondDerivSigmoid(z[(1:d)]%*%theta)*

firstDerivinv_logistic(sigmoid(z[(1:d)]%*%theta)))*

z[d+1])*(theta%*%t(theta))

return(H)

}

data=cbind(x,z)

In the next part we give the functions used to run each algorithm. We also give the code used to

produce our plots and carry out our tests such as Geweke (2004)’s test. We provide the code for our

first DGP only as it is straight forward to extend it to any other data set.

B.6 Algorithm APMHT
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korattikara<-function(z, Time, e=0.05, m,theta_ini){

z<-as.matrix(z)

N=dim(z)[1]

d=length(theta_ini)

theta=matrix(NA,d,Time+1)

theta[,1]=theta_ini

number_llik_eval=0

ptm <- proc.time()

for (t in (1:Time)) {

tp=rnorm(d,theta[,t],1.5) #RW proposal to be tuned

u=runif(1)

lbar=0

lsqbar=0

n=0

done=FALSE

mu0=(1/N)*(log(u)+log_prior(theta[,t])-log_prior(tp))

batch=0

index=(1:N)

while(done==FALSE) {

draw=sample(length(index),min(m,N-n))

batch=base::c(index[draw],batch)

n=n+min(m,N-n)

index=index[-draw]

l=llik(batch,z,tp)-llik(batch,z,theta[,t])

lbar=mean(l)

lsqbar=mean(l^2)

sd_batch=sqrt((n/(n-1))*(lsqbar-lbar^2))

sd_hat=sd_batch/sqrt(n)*sqrt(1-(n-1)/(N-1))

delta=1-pt(abs((lbar-mu0)/sd_hat), n-1)

if(delta<e) {
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if(lbar>mu0) {

theta[,t+1]=tp

}

else {

theta[,t+1]=theta[,t]

}

done=TRUE

number_llik_eval=number_llik_eval+n

}

}

}

print(paste("Completed in ", proc.time()[3]-ptm[3]," sec", sep=""))

return(list(theta=theta,number_llik_eval=number_llik_eval))

}

#Measures of approximation and efficiency

DGP0_korattikara<-korattikara(z,2e4,0.05,3000,theta)

ESS_korattikara<-effectiveSize(as.mcmc(DGP0_korattikara$theta[1,]))/

(DGP0_korattikara$number_llik_eval/n)

statip::hellinger(DGP0_korattikara$theta[1,],DGP0_MH[1,])

#diagnostic plots

p1<-ggplot(data=as.data.frame(cbind(DGP0_korattikara$theta[1,],

DGP0_MH[1,])))+

geom_density(aes(DGP0_korattikara$theta[1,],color="ApMHT"))+

geom_density(aes(DGP0_MH[1,],color="MH"))+

ylab("Density")+

xlab(expression(theta))+

scale_colour_manual(name="",

values=c("ApMHT"="dodgerblue4",
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"MH"="red3"),

labels=c("ApMHT","MH"))+

coord_flip()

p2<-ggplot(data=as.data.frame(DGP0_korattikara$theta[1,]))+

geom_line(aes(y=DGP0_korattikara$theta[1,], x=(1:20001),

color="ApMHT"))+

xlab("Time")+

ylab(expression(theta))+

scale_colour_manual(name="",

values=c("ApMHT"="dodgerblue4"))

ggarrange(p1, p2, nrow=2, common.legend = TRUE, legend="bottom")

#Geweke's test

DGP0_GITkorattikara=numeric(100)

for (i in (0:100)) {

phi=rnorm(1) #Simulate from prior

y_sim=rnorm(n,mean = abs(phi),sigma)

DGP0_GITkorattikara[i]=korattikara(y_sim,5000,0.05,1000,0)$

theta[1,sample((500:5000),1)]

print(i)

}

ks.test(DGP0_GITkorattikara,pnorm,1,1) #Kolmogorov-Smirnov test

prior_sim=rnorm(100)

ggplot(data=as.data.frame(cbind(prior_sim,DGP0_GITkorattikara)))+

geom_density(aes(prior_sim, color="Prior"))+

geom_density(aes(DGP0_GITkorattikara,color="Marginal"))+

scale_colour_manual(name="",

values=c("Prior"="red3",

"Marginal"="dodgerblue4"),

labels=c(expression(paste("Marginal of", " ", theta))
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,"Prior"))+

theme(legend.position="bottom")+

xlab(expression(theta))+

ylab("Density")

B.7 Pseudo-marginal algorithm

B.7.1 Pre-conditioning of the data set

#Euclidean distance function

dist_eucl<-function(x1,x2) {

out=0

if (is.vector(x1)) {

out=sum((x1-x2)^2)

}

else {

out=sweep(x1,2,x2)

out=apply(out^2,1,sum)

}

return(sqrt(out))

}

#Clustering Function

clustering <- function(z,eps) {

# y<-scale(y) SCALE DATA SET

# x<-scale(x)

r<-as.matrix(z)

n=dim(r)[1]

I=rep(0,n) #Indicator variable, 1 if obs i has been given a cluster

z=0 #centroids
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C=0 #indices inside each clusters

k=0

index=seq(1,n,1)

for (j in (1:n)) {

if(I[j]==0) {

p<-which(dist_eucl(r[as.logical(1-I),],r[j,])<=eps, arr.ind = TRUE)

C_current=index[p]

index=index[-p]

if (length(C_current)==1)

z=cbind(r[C_current,],z)

else

z=cbind((1/length(C_current))*

apply(as.matrix(r[C_current,]),2,sum),z)

I[C_current]=1

C=rbind.fill(as.data.frame(t(C_current)),as.data.frame(C))

k=k+1

}

}

return(list(K=k,z=z,C=t(C)))

}

#Conputation of matrices B

B=list()

for (k in (1:(out$K))) {

B[[k]]=matrix(0,dim(data)[2],dim(data)[2])

for (i in na.omit(out$C[,k])) {

b=data[i,]-out$z[,k]

B[[k]]=B[[k]]+b%*%t(b)

}

}
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out<-clustering(z,0.05)

data=z

B.7.2 Function

quiroz<-function(data,z,K,C,m, Time, theta_ini) {

N=dim(data)[1]

d=length(theta_ini)

d_b=rep(0,m)

d_bp=rep(0,m)

theta=matrix(NA,nrow=length(theta_ini), ncol=Time+1)

theta[,1]=theta_ini

for(t in (1:Time)) {

bp=rnorm(d,theta[,t],0.2) #RW proposal to be tuned

u=sample((1:N),m,replace=TRUE)

for (i in (1:m)) {

coord=which(out$C==u[i],arr.ind = TRUE)[2]

d_b[i]=llik(data[u[i],],theta[,t])-llik(z[,coord],theta[,t])-

gradient_llik(z=z[,coord],theta=theta[,t]) %*%

(data[u[i],]-z[,coord])-

0.5*t(data[u[i],]-z[,coord])%*%hessian_llik(z=z[,coord],

theta=theta[,t])%*%

(data[u[i],]-z[,coord])

d_bp[i]=llik(data[u[i],],bp)-llik(z[,coord],bp)-

gradient_llik(z=z[,coord],theta=bp)%*%(data[u[i],]-z[,coord])-

0.5*t(data[u[i],]-z[,coord])%*%hessian_llik(z=z[,coord],

theta=bp)%*%

(data[u[i],]-z[,coord])

}
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mu_b=mean(d_b)

sigma_b=var(d_b)

mu_bp=mean(d_bp)

sigma_bp=var(d_bp)

first_term_b=0

first_term_bp=0

third_term_b=0

third_term_bp=0

for (k in (1:K)) {

Nk=length(na.omit(out$C[,k]))

first_term_b=first_term_b+Nk*llik(z[,k],theta[,t])

first_term_bp=first_term_bp+Nk*llik(z[,k],bp)

H_bp=hessian_llik(z=z[,k],theta=bp)

H_b=hessian_llik(z=z[,k],theta=theta[,t])

third_term_b=third_term_b+H_b*B[[k]]

third_term_bp=third_term_bp+H_bp*B[[k]]

}

q_b=first_term_b+0.5*sum(rowSums(third_term_b))

q_bp=first_term_bp+0.5*sum(rowSums(third_term_bp))

l_hat_b=q_b+N*mu_b-(N^2)/(2*m)*sigma_b

l_hat_bp=q_bp+N*mu_bp-(N^2)/(2*m)*sigma_bp

prob=(l_hat_bp+log_prior(bp))-(l_hat_b+log_prior(theta[,t]))

if(log(runif(1))<=prob) {

theta[,t+1]=bp

}

else {

theta[,t+1]=theta[,t]

}

print(t)

}
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return(theta)

}

DGP0_quiroz<-quiroz(data,out$z,out$K,out$C,300, 20000, theta)

#Measures of approximation and efficiency

ESS_quiroz=effectiveSize(as.mcmc(DGP0_quiroz[1,]))/(20000*(8*300+4*out$K)/n)

plot(DGP0_quiroz[1,],type="l")

statip::hellinger(DGP0_quiroz[1,],DGP0_MH[1,])

#Diagnostic plots

p1<-ggplot(data=as.data.frame(cbind(DGP0_quiroz[1,],DGP0_MH[1,])))+

geom_density(aes(DGP0_quiroz[1,],color="PS"))+

geom_density(aes(DGP0_MH[1,],color="MH"))+

ylab("Density")+

xlab(expression(theta))+

scale_colour_manual(name="",

values=c("PS"="dodgerblue4",

"MH"="red3"),

labels=c("MH","Pseudo-Marginal MCMC"))+

coord_flip()

p2<-ggplot(data=as.data.frame(DGP0_quiroz[1,]))+

geom_line(aes(y=DGP0_quiroz[1,], x=(1:20001),color="PS"))+

xlab("Time")+

ylab(expression(theta))+

scale_colour_manual(name="",

values=c("PS"="dodgerblue4"))

ggarrange(p1, p2, nrow=2, common.legend = TRUE, legend="bottom")

#Geweke's test

DGP0_GITquiroz=numeric(300)

83



for (a in (1:300)) {

phi=rnorm(1,mean=1,sd=1)

y_sim=rnorm(n,mean = phi,1)

y_sim=as.matrix(y_sim)

out<-clustering(y_sim,0.2)

data=y_sim

B=list()

for (k in (1:(out$K))) {

B[[k]]=matrix(0,dim(data)[2],dim(data)[2])

for (i in na.omit(out$C[,k])) {

b=data[i,]-out$z[,k]

B[[k]]=B[[k]]+b%*%t(b)

}

}

DGP0_GITquiroz[a]=quiroz(data,out$z,out$K,out$C,300, 1000, 0)$

theta[1,sample((100:1000),1)]

print(a)

}

#Kolmogorov-Smirnov test

ks.test(DGP0_GITquiroz,pnorm,1,1)

prior_sim=rnorm(100,1)

ggplot(data=as.data.frame(cbind(prior_sim,DGP0_GITquiroz)))+

geom_density(aes(prior_sim, color="Prior"))+

geom_density(aes(DGP0_GITquiroz,color="Marginal"))+

scale_colour_manual(name="",

values=c("Prior"="red3",

"Marginal"="dodgerblue4"),

labels=c(expression(paste("Marginal of", " ", theta)),

"Prior"))+

theme(legend.position="bottom")+
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xlab(expression(theta))+

ylab("Density")

B.8 SGLD

SGLD<-function(z, eps=0.0001, Time=1000, m=1000, theta_ini=0) {

z<-as.matrix(z)

N=dim(z)[1]

d=length(theta_ini)

theta=matrix(NA,nrow=d, ncol=Time+1)

theta[,1]=theta_ini

for(i in (2:(Time+1))) {

batch=sample((1:N),m)

theta[,i]=theta[,i-1] +

(eps/2)*(gradient(log_prior,theta[,i-1])

+(N/m)*apply(

gradient(llik,x=theta[,i-1],i=batch,z=z),

2,

sum)

+rnorm(d,mean=0,eps))

}

return(theta)

}

DGP0_SGLD<-SGLD(z, eps=2*1e-4,Time=20000,m=5000,theta)

#Measures of approximation and efficiency

ESS_SGLD<-effectiveSize(as.mcmc(DGP0_SGLD[1,]))/((Time*2*2000)/n)

statip::hellinger(DGP0_SGLD[1,],DGP0_MH[1,])

#Diagnostic plots
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p1<-ggplot(data=as.data.frame(cbind(DGP0_SGLD[1,],DGP0_MH[1,])))+

geom_density(aes(DGP0_MH[1,],color="MH"))+

geom_density(aes(DGP0_SGLD[1,],color="SGLD"))+

ylab("Density")+

xlab(expression(theta))+

scale_colour_manual(name="",

values=c("SGLD"="dodgerblue4",

"MH"="red3"),

labels=c("MH","SGLD"))+

coord_flip()

p2<-ggplot(data=as.data.frame(DGP0_SGLD[1,]))+

geom_line(aes(y=DGP0_SGLD[1,], x=(1:20001),color="SGLD"))+

xlab("Time")+

ylab(expression(theta))+

scale_colour_manual(name="",

values=c("SGLD"="dodgerblue4"))

ggarrange(p1, p2, nrow=2, common.legend = TRUE, legend="bottom")

#Geweke's test

DGP0_GITSGLD=numeric(100)

for (i in (1:100)) {

phi=rnorm(1,mean=1,sd=1)

y_sim=rnorm(n,mean = phi,1)

DGP0_GITSGLD[i]=SGLD(y_sim, eps=2*1e-4,

Time=2000,m=5000,0)[1,sample((500:2000),1)]

print(i)

}

#Kolmogorov-Smirnov test

ks.test(DGP0_GITSGLD,pnorm,1,1)
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prior_sim=rnorm(1e2,1,1)

ggplot(data=as.data.frame(cbind(prior_sim,DGP0_GITSGLD)))+

geom_density(aes(prior_sim, color="Prior"))+

geom_density(aes(DGP0_GITSGLD,color="Marginal"))+

scale_colour_manual(name="",

values=c("Prior"="red3",

"Marginal"="dodgerblue4"),

labels=c(expression(paste("Marginal of", " ", theta)),

"Prior"))+

theme(legend.position="bottom")+

xlab(expression(theta))+

ylab("Density")

B.9 Consensus Monte-Carlo

#Function running MCMC on separate batches of the data set

consensus_batch<-function(z,s,Time,theta_ini){

z<-as.matrix(z)

N=dim(z)[1]

shuffle=sample((1:N),N,replace=FALSE)

d=length(theta_ini)

theta=list()

S=list()

W=list()

ptm <- proc.time()

for (i in (1:s)) {

S[[i]]=shuffle[(((i-1)*(N-N%%s)/s+1):(i*(N-N%%s)/s))]#set of indices

theta[[i]]=matrix(NA,nrow=d,ncol=Time+1)

theta[[i]][,1]=theta_ini
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llk_current=sum(llik(S[[i]],z,theta_ini))

for (t in (1:Time)) {

tp=rnorm(d,theta[[i]][,t],0.16)

llk_proposal=sum(llik(S[[i]],z,tp))

ratio=(llk_proposal+(1/s)*log_prior(tp))-

(llk_current+(1/s)*log_prior(theta[[i]][,t]))

if(log(runif(1))<=ratio) {

theta[[i]][,t+1]=tp

llk_current=llk_proposal

}

else

theta[[i]][,t+1]=theta[[i]][,t]

}

W[[i]]=solve(var(t(theta[[i]])))

}

print(paste("Each parallel computing was completed in ",

(proc.time()[3]-ptm[3])/s," sec", sep=""))

return(list(theta=theta,W=W))

}

#Function to combine the samples

consensus<-function(theta,W){

ptm<-proc.time()

Time=dim(theta[[1]])[2]

d=dim(theta[[1]])[1]

s=length(theta)

norm_const=Reduce('+',W)

norm_const=solve(norm_const)

out=0

for (i in (1:s)) {

out=out+W[[i]]%*%theta[[i]]

88



}

out=norm_const%*%out

print(paste("Combining part completed in ", proc.time()[3]-ptm[3]," sec", sep=""))

return(out)

}

Time=20000

s=10

DGP0_consensus=consensus_batch(z,s,Time,theta)

plot(DGP0_consensus$theta[[1]][1,],type="l")

ggplot(data=as.data.frame(DGP0_consensus$theta[[1]][1,]),

aes(DGP0_consensus$theta[[1]][1,]))+

geom_density()

DGP0_consensus=consensus(DGP0_consensus$theta,DGP0_consensus$W)

#Measures of approximation and efficiency

ESS_consensus=effectiveSize(as.mcmc(DGP0_consensus[1,]))/(Time*((n-n%%s)/s)/n)

statip::hellinger(DGP0_consensus[1,],DGP0_MH[1,])

#Diagnostic plots

p1<-ggplot(data=as.data.frame(cbind(DGP0_consensus[1,],DGP0_MH[1,])))+

geom_density(aes(DGP0_consensus[1,],color="Consensus"))+

geom_density(aes(DGP0_MH[1,],color="MH"))+

ylab("Density")+

xlab(expression(theta))+

scale_colour_manual(name="",

values=c("Consensus"="dodgerblue4",

"MH"="red3"),

labels=c("Consensus","MH"))+

coord_flip()

p2<-ggplot(data=as.data.frame(DGP0_consensus[1,]))+

geom_line(aes(y=DGP0_consensus[1,], x=(1:20001),color="Consensus"))+

xlab("Time")+
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ylab(expression(theta))+

scale_colour_manual(name="",

values=c("Consensus"="dodgerblue4"))

ggarrange(p1, p2, nrow=2, common.legend = TRUE, legend="bottom")

#Geweke's test

DGP0_GITconsensus=numeric(100)

for (i in (1:100)) {

phi=rnorm(1,mean=1,sd=1)

y_sim=rnorm(n,phi)

temp=consensus_batch(y_sim,10,3000,theta)

DGP0_GITconsensus[i]=consensus(temp$theta,temp$W)[1,sample((500:3000),1)]

print(i)

}

#Kolmogorov-Smirnov test

ks.test(DGP0_GITconsensus,pnorm,1,1)

prior_sim=rnorm(100,1,1)

ggplot(data=as.data.frame(cbind(prior_sim,DGP0_GITconsensus)))+

geom_density(aes(prior_sim, color="Prior"))+

geom_density(aes(DGP0_GITconsensus,color="Marginal"))+

scale_colour_manual(name="",

values=c("Prior"="red3",

"Marginal"="dodgerblue4"),

labels=c(expression(paste("Marginal of", " ", theta)),

"Prior"))+

theme(legend.position="bottom")+

xlab(expression(theta))+

ylab("Density")
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B.10 NPDPE

#Function to run MH on several small batches

batch_MCMC<-function(z,s,Time,theta_ini) {

z<-as.matrix(z)

N=dim(z)[1]

shuffle=sample((1:N),N,replace=FALSE)

d=length(theta_ini)

theta=list()

S=list()

ptm <- proc.time()

for (i in (1:s)) {

S[[i]]=shuffle[(((i-1)*(N-N%%s)/s+1):(i*(N-N%%s)/s))]#set of indices

theta[[i]]=matrix(NA,nrow=d,ncol=Time+1)

theta[[i]][,1]=theta_ini

llk_current=sum(llik(S[[i]],z,theta_ini))

for (t in (1:Time)) {

tp=rnorm(d,theta[[i]][,t],0.16)

llk_proposal=sum(llik(S[[i]],z,tp))

ratio=(llk_proposal+(1/s)*log_prior(tp))-

(llk_current+(1/s)*log_prior(theta[[i]][,t]))

if(log(runif(1))<=ratio) {

theta[[i]][,t+1]=tp

llk_current=llk_proposal

}

else

theta[[i]][,t+1]=theta[[i]][,t]

}

}
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print(paste("Each parallel computing was completed in ",

(proc.time()[3]-ptm[3])/s," sec", sep=""))

return(theta)

}

#Function to combine the samples

gaussian_kernel<-function(theta) {

ptm<-proc.time()

Time=dim(as.matrix(theta[[1]]))[2]

d=dim(as.matrix(theta[[1]]))[1]

s=length(theta)

t=sample((1:Time),s,replace = TRUE)

DGP0_neiswanger=matrix(NA,nrow=d,ncol=Time)

for(i in (1:Time)) {

h=1e-2

for(k in (1:s)) {

c<-t

c[k]=sample((1:Time),1,replace = TRUE)

theta_bar_t=0

theta_bar_c=0

w_t=0

w_c=0

for (j in (1:s)) {

theta_bar_t=theta_bar_t+theta[[j]][,t[j]]

theta_bar_c=theta_bar_c+theta[[j]][,c[j]]

}

theta_bar_t=(1/s)*theta_bar_t

theta_bar_c=(1/s)*theta_bar_c

for (j in (1:s)) {

w_t=w_t + dmvnorm(theta[[j]][,t[j]],mean=theta_bar_t,sigma=h^2*diag(d),

log=TRUE)
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w_c=w_c + dmvnorm(theta[[j]][,c[j]],mean=theta_bar_c,sigma=h^2*diag(d),

log=TRUE)

}

if(log(runif(1))<w_c-w_t) {

t<-c

theta_bar_t<-theta_bar_c

}

}

DGP0_neiswanger[,i]=rmvnorm(1,mean=theta_bar_t,sigma=(h^2/s)*diag(d))

}

print(paste("Combining part completed in ", proc.time()[3]-ptm[3]," sec", sep=""))

return(DGP0_neiswanger)

}

Time=20000

s=10

DGP0_neiswanger_batch=batch_MCMC(z,10,20000,theta)

plot(DGP0_neiswanger_batch[[3]][1,],type="l")

1 - rejectionRate(as.mcmc(DGP0_neiswanger_batch[[1]][1,]))

DGP0_neiswanger=gaussian_kernel(DGP0_neiswanger_batch)

#Measures of approximation and efficiency

ESS_neiswanger=effectiveSize(as.mcmc(DGP0_neiswanger[1,]))/(Time*((n-n%%s)/s)/n)

statip::hellinger(DGP0_neiswanger[1,],DGP0_MH[1,])

#Diagnostic plots

p1<-ggplot(data=as.data.frame(cbind(DGP0_neiswanger[1,],DGP0_MH[1,])))+

geom_density(aes(DGP0_neiswanger[1,],color="NPDPE"))+

geom_density(aes(DGP0_MH[1,],color="MH"))+

ylab("Density")+

xlab(expression(theta))+

scale_color_manual(name="",
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values=c("NPDPE"="dodgerblue4",

"MH"="red3"

),

labels=c("MH","NPDPE"))+

coord_flip()

p2<-ggplot(data=as.data.frame(DGP0_neiswanger[1,]))+

geom_line(aes(y=DGP0_neiswanger[1,], x=(1:20001),color="NPDPE"))+

xlab("Time")+

ylab(expression(theta))+

scale_colour_manual(name="",

values=c("NPDPE"="dodgerblue4"))

ggarrange(p1, p2, nrow=2, common.legend = TRUE, legend="bottom")

#Geweke's test

DGP0_GITneiswanger=numeric(100)

for (i in (1:100)) {

phi=rnorm(1,mean=1,sd=1)

y_sim=rnorm(n,mean = phi,1)

temp=batch_MCMC(y_sim,10,3000,0)

DGP0_GITneiswanger[i]=gaussian_kernel(temp)[1,sample((500:3000),1)]

print(i)

}

#Kolmogorov-Smirnov test

ks.test(DGP0_GITneiswanger[(1:100)],pnorm,1,1)

prior_sim=rnorm(100,1,1)

ggplot(data=as.data.frame(cbind(prior_sim,DGP0_GITneiswanger)))+

geom_density(aes(prior_sim[(1:100)], color="Prior"))+

geom_density(aes(DGP0_GITneiswanger,color="Marginal"))+

scale_colour_manual(name="",

values=c("Prior"="red3",
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"Marginal"="dodgerblue4"),

labels=c(expression(paste("Marginal of", " ", theta)),"Prior"))+

theme(legend.position="bottom")+

xlab(expression(theta))+

ylab("Density")
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